Efficient time-domain 3D elastic and viscoelastic full-waveform inversion using a spectral-element method on flexible Cartesian-based mesh

Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. R61-R83 ◽  
Author(s):  
Phuong-Thu Trinh ◽  
Romain Brossier ◽  
Ludovic Métivier ◽  
Laure Tavard ◽  
Jean Virieux

Viscoelastic full-waveform inversion is recognized as a challenging task for current acquisition deployment at the crustal scale. We have developed an efficient formulation based on a time-domain spectral-element method on a flexible Cartesian-based mesh. We consider anisotropic elastic coefficients and isotropic attenuation. Complete gradient expressions including the attenuation contribution spread into those of elastic components are given in a consistent way. The influence of attenuation on the P-wave velocity reconstruction is illustrated through a toy configuration. The numerical implementation of the forward problem includes efficient matrix-vector products for solving second-order elastodynamic equations for 3D geometries: An original high-order integration for topography effects is performed at nearly no extra cost. Combined adjoint and forward field recomputation from the final state and previously saved boundary values allows the estimation of misfit gradients for density, elastic parameters, and attenuation factors with no I/O efforts. Two-level parallelism is implemented over the sources and domain decomposition, which is necessary for a realistic 3D configuration. The misfit gradient preconditioning is performed by a so-called Bessel filter using an efficient differential implementation based on finite-element ingredients on the forward mesh instead of the often-used, costly convolution approach. A 3D synthetic illustration is provided on a subset ([Formula: see text]) of the SEG Advanced Modeling (SEAM) Phase II Foothills model with 4 lines of 20 sources. The structurally based Bessel filter and a simple data hierarchy strategy considering early body waves before all waves including surface waves allow a precise reconstruction of the P- and S-wavespeeds while keeping a smooth density description.

Geophysics ◽  
2021 ◽  
pp. 1-29
Author(s):  
Chao Lyu ◽  
Yann Capdeville ◽  
Gang Lv ◽  
Liang Zhao

The explicit time-domain spectral-element method (SEM) for synthesizing seismograms hasgained tremendous credibility within the seismological community at all scales. Althoughthe recent introduction of non-periodic homogenization has addressed the spatial meshing difficulty of the mechanical discontinuities, the Courant-Friedrichs-Lewy (CFL) stability criterionstrictly constrains the maximum time step, which still puts a great burden on the numericalsimulation. In the explicit time-domain SEM, the source of instability of using a time stepbeyond the stability criterion is that some unstable eigenvalues of the updated matrix are largerthan what can be accurately simulated. We succeed in removing the CFL stability condition inthe explicit time-domain SEM by combining the forward time dispersion-transform method,the eigenvalue perturbation, and the inverse time dispersion-transform method. Our theoretical analyses and numerical experiments both in the homogeneous, moderate and strong heterogeneous models, show that this combination can precisely simulate waveforms with timesteps dozens of the CFL limit even towards the Nyquist limit especially for the efficient veryhigh degree SEM, which abundantly saves the iteration times without suffering from the time-dispersion error. It demonstrates a potential application prospect in some situations such as thefull waveform inversion which requires multiple numerical simulations for the same model.


2017 ◽  
Vol 209 (3) ◽  
pp. 1718-1734 ◽  
Author(s):  
Gabriel Fabien-Ouellet ◽  
Erwan Gloaguen ◽  
Bernard Giroux

2017 ◽  
Author(s):  
Musa Maharramov ◽  
Ganglin Chen ◽  
Partha S. Routh ◽  
Anatoly I. Baumstein ◽  
Sunwoong Lee ◽  
...  

Geophysics ◽  
2021 ◽  
pp. 1-52
Author(s):  
Yuzhu Liu ◽  
Xinquan Huang ◽  
Jizhong Yang ◽  
Xueyi Liu ◽  
Bin Li ◽  
...  

Thin sand-mud-coal interbedded layers and multiples caused by shallow water pose great challenges to conventional 3D multi-channel seismic techniques used to detect the deeply buried reservoirs in the Qiuyue field. In 2017, a dense ocean-bottom seismometer (OBS) acquisition program acquired a four-component dataset in East China Sea. To delineate the deep reservoir structures in the Qiuyue field, we applied a full-waveform inversion (FWI) workflow to this dense four-component OBS dataset. After preprocessing, including receiver geometry correction, moveout correction, component rotation, and energy transformation from 3D to 2D, a preconditioned first-arrival traveltime tomography based on an improved scattering integral algorithm is applied to construct an initial P-wave velocity model. To eliminate the influence of the wavelet estimation process, a convolutional-wavefield-based objective function for the preprocessed hydrophone component is used during acoustic FWI. By inverting the waveforms associated with early arrivals, a relatively high-resolution underground P-wave velocity model is obtained, with updates at 2.0 km and 4.7 km depth. Initial S-wave velocity and density models are then constructed based on their prior relationships to the P-wave velocity, accompanied by a reciprocal source-independent elastic full-waveform inversion to refine both velocity models. Compared to a traditional workflow, guided by stacking velocity analysis or migration velocity analysis, and using only the pressure component or other single-component, the workflow presented in this study represents a good approach for inverting the four-component OBS dataset to characterize sub-seafloor velocity structures.


Sign in / Sign up

Export Citation Format

Share Document