scholarly journals Application of perturbation theory to a P-wave eikonal equation in orthorhombic media

Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. C309-C317 ◽  
Author(s):  
Alexey Stovas ◽  
Nabil Masmoudi ◽  
Tariq Alkhalifah

The P-wave eikonal equation for orthorhombic (ORT) anisotropic media is a highly nonlinear partial differential equation requiring the solution of a sixth-order polynomial to obtain traveltimes, resulting in complex and time-consuming numerical solutions. To alleviate this complexity, we approximate the solution of this equation by applying a multiparametric perturbation approach. We also investigated the sensitivity of traveltime surfaces in ORT media with respect to three anelliptic parameters. As a result, a simple and accurate P-wave traveltime approximation valid for ORT media was derived. Two different possible anelliptic parameterizations were compared. One of the parameterizations includes anelliptic parameters defined at zero offset: [Formula: see text], [Formula: see text], and [Formula: see text]. Another parameterization includes anelliptic parameters defined for all symmetry planes: [Formula: see text], [Formula: see text], and [Formula: see text]. The azimuthal behavior of sensitivity coefficients with different parameterizations was used to analyze the crosstalk between anelliptic parameters.

2013 ◽  
Vol 5 (04) ◽  
pp. 407-422 ◽  
Author(s):  
Matthew A. Beauregard ◽  
Qin Sheng

AbstractFinite difference computations that involve spatial adaptation commonly employ an equidistribution principle. In these cases, a new mesh is constructed such that a given monitor function is equidistributed in some sense. Typical choices of the monitor function involve the solution or one of its many derivatives. This straightforward concept has proven to be extremely effective and practical. However, selections of core monitoring functions are often challenging and crucial to the computational success. This paper concerns six different designs of the monitoring function that targets a highly nonlinear partial differential equation that exhibits both quenching-type and degeneracy singularities. While the first four monitoring strategies are within the so-calledprimitiveregime, the rest belong to a later category of themodifiedtype, which requires the priori knowledge of certain important quenching solution characteristics. Simulated examples are given to illustrate our study and conclusions.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
I. Rusagara ◽  
C. Harley

The temperature profile for fins with temperature-dependent thermal conductivity and heat transfer coefficients will be considered. Assuming such forms for these coefficients leads to a highly nonlinear partial differential equation (PDE) which cannot easily be solved analytically. We establish a numerical balance rule which can assist in getting a well-balanced numerical scheme. When coupled with the zero-flux condition, this scheme can be used to solve this nonlinear partial differential equation (PDE) modelling the temperature distribution in a one-dimensional longitudinal triangular fin without requiring any additional assumptions or simplifications of the fin profile.


1982 ◽  
Vol 104 (2) ◽  
pp. 149-156 ◽  
Author(s):  
Chi U. Ikoku ◽  
H. J. Ramey

This paper presents solutions of the nonlinear partial differential equation using the Douglas-Jones predictor-corrector method for the numerical solution of nonlinear partial differential equations. The results are presented in tabular form and as semilogarithmic and log-log type-curve graphs. Graphs of dimensionless pressure versus dimensionless radius also are presented. Compared to results from analytical solutions of the linear partial differential equation, the graphs have the same shape. The error introduced by the linearizing approximation is small for many values of the flow behavior index, n, and decreases as n tends to unity. Dimensionless pressure is a linear function of dimensionless radius to the power (1–n), near the well, as predicted by the steady-state equations. Also radius of investigation equation derived analytically agrees with results from numerical solutions.


2012 ◽  
Vol 2012 ◽  
pp. 1-5
Author(s):  
Arun Kumar ◽  
Ram Dayal Pankaj

Analytical and numerical solutions are obtained for coupled nonlinear partial differential equation by the well-known Laplace decomposition method. We combined Laplace transform and Adomain decomposition method and present a new approach for solving coupled Schrödinger-Korteweg-de Vries (Sch-KdV) equation. The method does not need linearization, weak nonlinearity assumptions, or perturbation theory. We compared the numerical solutions with corresponding analytical solutions.


2014 ◽  
Vol 986-987 ◽  
pp. 1418-1421
Author(s):  
Jun Shan Li

In this paper, we propose a meshless method for solving the mathematical model concerning the leakage problem when the pressure is tested in the gas pipeline. The method of radial basis function (RBF) can be used for solving partial differential equation by writing the solution in the form of linear combination of radius basis functions, that is, when integrating the definite conditions, one can find the combination coefficients and then the numerical solution. The leak problem is a kind of inverse problem that is focused by many engineers or mathematical researchers. The strength of the leak can find easily by the additional conditions and the numerical solutions.


Author(s):  
Ram Dayal Pankaj ◽  
Arun Kumar ◽  
Chandrawati Sindhi

The Ritz variational method has been applied to the nonlinear partial differential equation to construct a model for travelling wave solution. The spatially periodic trial function was chosen in the form of combination of Jacobian Elliptic functions, with the dependence of its parameters


Sign in / Sign up

Export Citation Format

Share Document