Geophysical inversions applied to 3D geology characterization of an iron oxide copper-gold deposit in Brazil

Geophysics ◽  
2017 ◽  
Vol 82 (5) ◽  
pp. K1-K13 ◽  
Author(s):  
Aline Tavares Melo ◽  
Jiajia Sun ◽  
Yaoguo Li

Mineral exploration dynamics often requires an efficient and objective means of evaluating a prospect in early exploration stages, when few holes have been drilled. In the case of deep prospects or prospects under cover, this evaluation will mostly be based on geophysical data. To develop an objective interpretation method capable of combining all the information available, we have developed an integrated interpretation scheme of geophysical models and sparse geologic data. Our method is based on the relationship between recovered physical properties obtained from 2D and 3D inversions, aiming to find patterns associated with geologic units, such as iron formation, copper ore, and host rock. The interpretation is guided by theoretical relations of the minerals of interest (chalcopyrite and magnetite) and the sparse geologic information available. It is suitable for prospects in the initial stages of exploration when only limited mineralogical information is available from, say, one drillhole. We have demonstrated the success of the method using magnetic and DC resistivity data from the Cristalino iron oxide copper-gold deposit, located in northern Brazil, which is covered by a thick soil overburden. The theoretical behavior of the physical properties of chalcopyrite and magnetite was first combined with the rock types identified in the drill cores to find groups or classes associated with different amounts of these minerals. Then, these relative relations between units were applied to define four classes in the scatterplot of recovered susceptibility and conductivity values from 2D inversions. These four classes are associated with iron formation, copper ore, and two types of host rocks. After the validation with the known geology, the same interpretation scheme was applied to the scatterplot of recovered susceptibility and conductivity values from 3D inversions. The final interpreted volume allows the explorationist to have an approximate estimate of the copper body extent.

2009 ◽  
Vol 2009 (1) ◽  
pp. 1 ◽  
Author(s):  
L. Vella ◽  
D. Emerson

2022 ◽  
Vol 117 (2) ◽  
pp. 485-494
Author(s):  
Tobias U. Schlegel ◽  
Renee Birchall ◽  
Tina D. Shelton ◽  
James R. Austin

Abstract Iron oxide copper-gold (IOCG) deposits form in spatial and genetic relation to hydrothermal iron oxide-alkali-calcic-hydrolytic alteration and thus show a mappable zonation of mineral assemblages toward the orebody. The mineral zonation of a breccia matrix-hosted orebody is efficiently mapped by regularly spaced samples analyzed by the scanning electron microscopy-integrated mineral analyzer technique. The method results in quantitative estimates of the mineralogy and allows the reliable recognition of characteristic alteration as well as mineralization-related mineral assemblages from detailed mineral maps. The Ernest Henry deposit is located in the Cloncurry district of Queensland and is one of Australia’s significant IOCG deposits. It is known for its association of K-feldspar altered clasts with iron oxides and chalcopyrite in the breccia matrix. Our mineral mapping approach shows that the hydrothermal alteration resulted in a characteristic zonation of minerals radiating outward from the pipe-shaped orebody. The mineral zonation is the result of a sequence of sodic alteration followed by potassic alteration, brecciation, and, finally, by hydrolytic (acid) alteration. The hydrolytic alteration primarily affected the breccia matrix and was related to economic mineralization. Alteration halos of individual minerals such as pyrite and apatite extend dozens to hundreds of meters beyond the limits of the orebody into the host rocks. Likewise, the Fe-Mg ratio in hydrothermal chlorites changes systematically with respect to their distance from the orebody. Geochemical data obtained from portable X-ray fluorescence (p-XRF) and petrophysical data acquired from a magnetic susceptibility meter and a gamma-ray spectrometer support the mineralogical data and help to accurately identify mineral halos in rocks surrounding the ore zone. Specifically, the combination of mineralogical data with multielement data such as P, Mn, As, P, and U obtained from p-XRF and positive U anomalies from radiometric measurements has potential to direct an exploration program toward higher Cu-Au grades.


2020 ◽  
Vol 72 (3) ◽  
pp. P250820
Author(s):  
Joaquín A. Proenza ◽  
Lisard Torró ◽  
Carl E. Nelson

The region that encompasses Latin America and the Caribbean is a preferential destination for mining and mineral exploration, according to the Mineral Commodity Summaries 2020 of the US Geological Survey (https://www.usgs.gov/centers/nmic/). The region contains important resources of copper, gold, silver, nickel, cobalt, iron, niobium, aluminum, zinc, lead, tin, lithium, chromium, and other metals. For example, Chile is the world’s largest copper producer and the second largest lithium producer. Brazil is the world’s leading niobium producer, the second largest producer of iron ore, and the third-ranked producer of tantalum. Cuba contains some of the largest reserves of nickel and cobalt in the world, associated with lateritic Ni-Co deposits. Mexico is traditionally the largest silver producer and contains the two largest mines in this commodity and, along with Peru, Chile, Bolivia and Argentina, accounts for more than half of the total amount of global silver production. The region also hosts several world-class gold mines (e.g., Pueblo Viejo in the Dominican Republic, Paracotu in Brazil, Veladero in Argentina, and Yanacocha in Peru). Also, Bolivia and Brazil are among the world’s leading producers of tin. The region hosts a variety of deposit types, among which the most outstanding are porphyry copper and epithermal precious metal, bauxite and lateritic nickel, lateritic iron ore from banded iron-formation, iron-oxide-copper-gold (IOCG), sulfide skarn, volcanogenic massive sulfide (VMS), Mississippi Valley type (MVT), primary and weathering-related Nb-bearing minerals associated with alkaline–carbonatite complexes, tin–antimony polymetallic veins, and ophiolitic chromite. This special issue on Mineral Deposits of Latin America and the Caribbean in the Boletín de la Sociedad Geológica Mexicana contains nineteen papers. Contributions describe mineral deposits from Mexico, Panama, Cuba, Dominican Republic, Colombia, Venezuela, Ecuador, Chile, and Argentina. This volume of papers covers four mineral systems (mafic-ultramafic orthomagmatic mineral systems, porphyry-skarn-epithermal mineral systems, iron oxide copper-gold mineral systems, and surficial mineral systems). This special issue also includes papers on industrial minerals, techniques for ore discovery (predictive modelling of mineral exploration using GIS), regional metallogeny and mining history.


2017 ◽  
Vol 183 ◽  
pp. 58-78 ◽  
Author(s):  
Mohammad Hassan Karimpour ◽  
Azadeh Malekzadeh Shafaroudi ◽  
Alireza Mazloumi Bajestani ◽  
Richard Keith Schader ◽  
Charles R. Stern ◽  
...  

2016 ◽  
Vol 64 (6) ◽  
pp. 2305-2321 ◽  
Author(s):  
Dinh Chau Nguyen ◽  
Phon Le Khanh ◽  
Paweł Jodłowski ◽  
Jadwiga Pieczonka ◽  
Adam Piestrzyński ◽  
...  

2007 ◽  
Vol 43 (2) ◽  
pp. 129-159 ◽  
Author(s):  
Lena V. S. Monteiro ◽  
Roberto P. Xavier ◽  
Emerson R. de Carvalho ◽  
Murray W. Hitzman ◽  
Craig A. Johnson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document