Simultaneous inversion for microseismic event location and velocity model in Vaca Muerta Formation

Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. KS23-KS34 ◽  
Author(s):  
Zhishuai Zhang ◽  
Jing Du ◽  
Fuchun Gao

Velocity models play a key role in locating microseismic events; however, it is usually challenging to construct them reliably. Traditional model-building strategies depend on the availability of well logs or perforation shots. We simultaneously invert for microseismic event locations and a velocity model under the Bayesian inference framework, and we apply it in a field data set acquired in the Vaca Muerta Formation at Neuquén, Argentina. This methodology enables uncertainty and posterior covariance analysis. By matching the moveouts of the P- and S-wave arrival times, we were able to estimate a 1D velocity model to achieve improved event locations. Various analyses indicate the superiority of this model over a model built with the traditional strategy. With this algorithm, we can perform microseismic monitoring to fracturing treatments in which no perforation data are available. In addition, we can also apply it for long-term passive seismicity reservoir monitoring in which changes of reservoir properties are expected.

2019 ◽  
Vol 38 (11) ◽  
pp. 872a1-872a9 ◽  
Author(s):  
Mauricio Araya-Polo ◽  
Stuart Farris ◽  
Manuel Florez

Exploration seismic data are heavily manipulated before human interpreters are able to extract meaningful information regarding subsurface structures. This manipulation adds modeling and human biases and is limited by methodological shortcomings. Alternatively, using seismic data directly is becoming possible thanks to deep learning (DL) techniques. A DL-based workflow is introduced that uses analog velocity models and realistic raw seismic waveforms as input and produces subsurface velocity models as output. When insufficient data are used for training, DL algorithms tend to overfit or fail. Gathering large amounts of labeled and standardized seismic data sets is not straightforward. This shortage of quality data is addressed by building a generative adversarial network (GAN) to augment the original training data set, which is then used by DL-driven seismic tomography as input. The DL tomographic operator predicts velocity models with high statistical and structural accuracy after being trained with GAN-generated velocity models. Beyond the field of exploration geophysics, the use of machine learning in earth science is challenged by the lack of labeled data or properly interpreted ground truth, since we seldom know what truly exists beneath the earth's surface. The unsupervised approach (using GANs to generate labeled data)illustrates a way to mitigate this problem and opens geology, geophysics, and planetary sciences to more DL applications.


Geophysics ◽  
2020 ◽  
pp. 1-79
Author(s):  
Can Oren ◽  
Jeffrey Shragge

Accurately estimating event locations is of significant importance in microseismic investigations because this information greatly contributes to the overall success of hydraulic fracturing monitoring programs. Full-wavefield time-reverse imaging (TRI) using one or more wave-equation imaging conditions offers an effective methodology for locating surface-recorded microseismic events. To be most beneficial in microseismic monitoring programs, though, the TRI procedure requires using accurate subsurface models that account for elastic media effects. We develop a novel microseismic (extended) PS energy imaging condition that explicitly incorporates the stiffness tensor and exhibits heightened sensitivity to isotropic elastic model perturbations compared to existing imaging conditions. Numerical experiments demonstrate the sensitivity of microseismic TRI results to perturbations in P- and S-wave velocity models. Zero-lag and extended microseismic source images computed at selected subsurface locations yields useful information about 3D P- and S-wave velocity model accuracy. Thus, we assert that these image volumes potentially can serve as the input into microseismic elastic velocity model building algorithms.


Geophysics ◽  
2006 ◽  
Vol 71 (3) ◽  
pp. R1-R10 ◽  
Author(s):  
Helene Hafslund Veire ◽  
Martin Landrø

Elastic parameters derived from seismic data are valuable input for reservoir characterization because they can be related to lithology and fluid content of the reservoir through empirical relationships. The relationship between physical properties of rocks and fluids and P-wave seismic data is nonunique. This leads to large uncertainties in reservoir models derived from P-wave seismic data. Because S- waves do not propagate through fluids, the combined use of P-and S-wave seismic data might increase our ability to derive fluid and lithology effects from seismic data, reducing the uncertainty in reservoir characterization and thereby improving 3D reservoir model-building. We present a joint inversion method for PP and PS seismic data by solving approximated linear expressions of PP and PS reflection coefficients simultaneously using a least-squares estimation algorithm. The resulting system of equations is solved by singular-value decomposition (SVD). By combining the two independent measurements (PP and PS seismic data), we stabilize the system of equations for PP and PS seismic data separately, leading to more robust parameter estimation. The method does not require any knowledge of PP and PS wavelets. We tested the stability of this joint inversion method on a 1D synthetic data set. We also applied the methodology to North Sea multicomponent field data to identify sand layers in a shallow formation. The identified sand layers from our inverted sections are consistent with observations from nearby well logs.


Geophysics ◽  
2020 ◽  
Vol 85 (2) ◽  
pp. U31-U46
Author(s):  
Wenlong Wang ◽  
Jianwei Ma

We have developed an artificial neural network to estimate P-wave velocity models directly from prestack common-source gathers. Our network is composed of a fully connected layer set and a modified fully convolutional layer set. The parameters in the network are tuned through supervised learning to map multishot common-source gathers to velocity models. To boost the generalization ability, the network is trained on a massive data set in which the velocity models are modified from natural images that are collected from an online repository. Multishot seismic traces are simulated from those models with acoustic wave equations in a crosswell acquisition geometry. Shot gathers from different source positions are transformed as channels in the network to increase data redundancy. The training process is expensive, but it only occurs once up front. The cost for predicting velocity models is negligible once the training is complete. Different variations of the network are trained and analyzed. The trained networks indicate encouraging results for predicting velocity models from prestack seismic data that are acquired with the same geometry as in the training set.


Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB27-WB39 ◽  
Author(s):  
Zheng-Zheng Zhou ◽  
Michael Howard ◽  
Cheryl Mifflin

Various reverse time migration (RTM) angle gather generation techniques have been developed to address poor subsalt data quality and multiarrival induced problems in gathers from Kirchhoff migration. But these techniques introduce new problems, such as inaccuracies in 2D subsurface angle gathers and edge diffraction artifacts in 3D subsurface angle gathers. The unique rich-azimuth data set acquired over the Shenzi field in the Gulf of Mexico enabled the generally artifact-free generation of 3D subsurface angle gathers. Using this data set, we carried out suprasalt tomography and salt model building steps and then produced 3D angle gathers to update the subsalt velocity. We used tilted transverse isotropy RTM with extended image condition to generate full 3D subsurface offset domain common image gathers, which were subsequently converted to 3D angle gathers. The angle gathers were substacked along the subsurface azimuth axis into azimuth sectors. Residual moveout analysis was carried out, and ray-based tomography was used to update velocities. The updated velocity model resulted in improved imaging of the subsalt section. We also applied residual moveout and selective stacking to 3D angle gathers from the final migration to produce an optimized stack image.


Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE183-VE194 ◽  
Author(s):  
Junru Jiao ◽  
David R. Lowrey ◽  
John F. Willis ◽  
Ruben D. Martínez

Imaging sediments below salt bodies is challenging because of the inherent difficulty of estimating accurate velocity models. These models can be estimated in a variety of ways with varying degrees of expense and effectiveness. Two methods are commercially viable trade-offs. In the first method, residual-moveout analysis is performed in a layer-stripping mode. The models produced with this method can be used as a first approximation of the subsalt velocity field. A wave-equation migration scanning technique is more suitable for fine-tuning the velocity model below the salt. Both methods can be run as part of a sophisticated interactive velocity interpretation software package that makes velocity interpretation efficient. Performance of these methods has been tested on synthetic and field data examples.


2021 ◽  
Vol 40 (5) ◽  
pp. 324-334
Author(s):  
Rongxin Huang ◽  
Zhigang Zhang ◽  
Zedong Wu ◽  
Zhiyuan Wei ◽  
Jiawei Mei ◽  
...  

Seismic imaging using full-wavefield data that includes primary reflections, transmitted waves, and their multiples has been the holy grail for generations of geophysicists. To be able to use the full-wavefield data effectively requires a forward-modeling process to generate full-wavefield data, an inversion scheme to minimize the difference between modeled and recorded data, and, more importantly, an accurate velocity model to correctly propagate and collapse energy of different wave modes. All of these elements have been embedded in the framework of full-waveform inversion (FWI) since it was proposed three decades ago. However, for a long time, the application of FWI did not find its way into the domain of full-wavefield imaging, mostly owing to the lack of data sets with good constraints to ensure the convergence of inversion, the required compute power to handle large data sets and extend the inversion frequency to the bandwidth needed for imaging, and, most significantly, stable FWI algorithms that could work with different data types in different geologic settings. Recently, with the advancement of high-performance computing and progress in FWI algorithms at tackling issues such as cycle skipping and amplitude mismatch, FWI has found success using different data types in a variety of geologic settings, providing some of the most accurate velocity models for generating significantly improved migration images. Here, we take a step further to modify the FWI workflow to output the subsurface image or reflectivity directly, potentially eliminating the need to go through the time-consuming conventional seismic imaging process that involves preprocessing, velocity model building, and migration. Compared with a conventional migration image, the reflectivity image directly output from FWI often provides additional structural information with better illumination and higher signal-to-noise ratio naturally as a result of many iterations of least-squares fitting of the full-wavefield data.


Geophysics ◽  
1994 ◽  
Vol 59 (4) ◽  
pp. 577-590 ◽  
Author(s):  
Side Jin ◽  
Raul Madariaga

Seismic reflection data contain information on small‐scale impedance variations and a smooth reference velocity model. Given a reference velocity model, the reflectors can be obtained by linearized migration‐inversion. If the reference velocity is incorrect, the reflectors obtained by inverting different subsets of the data will be incoherent. We propose to use the coherency of these images to invert for the background velocity distribution. We have developed a two‐step iterative inversion method in which we separate the retrieval of small‐scale variations of the seismic velocity from the longer‐period reference velocity model. Given an initial background velocity model, we use a waveform misfit‐functional for the inversion of small‐scale velocity variations. For this linear step we use the linearized migration‐inversion method based on ray theory that we have recently developed with Lambaré and Virieux. The reference velocity model is then updated by a Monte Carlo inversion method. For the nonlinear inversion of the velocity background, we introduce an objective functional that measures the coherency of the short wavelength components obtained by inverting different common shot gathers at the same locations. The nonlinear functional is calculated directly in migrated data space to avoid expensive numerical forward modeling by finite differences or ray theory. Our method is somewhat similar to an iterative migration velocity analysis, but we do an automatic search for relatively large‐scale 1-D reference velocity models. We apply the nonlinear inversion method to a marine data set from the North Sea and also show that nonlinear inversion can be applied to realistic scale data sets to obtain a laterally heterogeneous velocity model with a reasonable amount of computer time.


Sign in / Sign up

Export Citation Format

Share Document