scholarly journals From tomography to full-waveform inversion with a single objective function

Geophysics ◽  
2014 ◽  
Vol 79 (2) ◽  
pp. R55-R61 ◽  
Author(s):  
Tariq Alkhalifah ◽  
Yunseok Choi

In full-waveform inversion (FWI), a gradient-based update of the velocity model requires an initial velocity that produces synthetic data that are within a half-cycle, everywhere, from the field data. Such initial velocity models are usually extracted from migration velocity analysis or traveltime tomography, among other means, and are not guaranteed to adhere to the FWI requirements for an initial velocity model. As such, we evaluated an objective function based on the misfit in the instantaneous traveltime between the observed and modeled data. This phase-based attribute of the wavefield, along with its phase unwrapping characteristics, provided a frequency-dependent traveltime function that was easy to use and quantify, especially compared to conventional phase representation. With a strong Laplace damping of the modeled, potentially low-frequency, data along the time axis, this attribute admitted a first-arrival traveltime that could be compared with picked ones from the observed data, such as in wave equation tomography (WET). As we relax the damping on the synthetic and observed data, the objective function measures the misfit in the phase, however unwrapped. It, thus, provided a single objective function for a natural transition from WET to FWI. A Marmousi example demonstrated the effectiveness of the approach.

Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. R411-R427 ◽  
Author(s):  
Gang Yao ◽  
Nuno V. da Silva ◽  
Michael Warner ◽  
Di Wu ◽  
Chenhao Yang

Full-waveform inversion (FWI) is a promising technique for recovering the earth models for exploration geophysics and global seismology. FWI is generally formulated as the minimization of an objective function, defined as the L2-norm of the data residuals. The nonconvex nature of this objective function is one of the main obstacles for the successful application of FWI. A key manifestation of this nonconvexity is cycle skipping, which happens if the predicted data are more than half a cycle away from the recorded data. We have developed the concept of intermediate data for tackling cycle skipping. This intermediate data set is created to sit between predicted and recorded data, and it is less than half a cycle away from the predicted data. Inverting the intermediate data rather than the cycle-skipped recorded data can then circumvent cycle skipping. We applied this concept to invert cycle-skipped first arrivals. First, we picked up the first breaks of the predicted data and the recorded data. Second, we linearly scaled down the time difference between the two first breaks of each shot into a series of time shifts, the maximum of which was less than half a cycle, for each trace in this shot. Third, we moved the predicted data with the corresponding time shifts to create the intermediate data. Finally, we inverted the intermediate data rather than the recorded data. Because the intermediate data are not cycle-skipped and contain the traveltime information of the recorded data, FWI with intermediate data updates the background velocity model in the correct direction. Thus, it produces a background velocity model accurate enough for carrying out conventional FWI to rebuild the intermediate- and short-wavelength components of the velocity model. Our numerical examples using synthetic data validate the intermediate-data concept for tackling cycle skipping and demonstrate its effectiveness for the application to first arrivals.


Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. R201-R211 ◽  
Author(s):  
Zedong Wu ◽  
Tariq Alkhalifah

Standard full-waveform inversion (FWI) attempts to minimize the difference between observed and modeled data. However, this difference is obviously sensitive to the amplitude of observed data, which leads to difficulties because we often do not process data in absolute units and because we usually do not consider density variations, elastic effects, or more complicated physical phenomena. Global correlation methods can remove the amplitude influence for each trace and thus can mitigate such difficulties in some sense. However, this approach still suffers from the well-known cycle-skipping problem, leading to a flat objective function when observed and modeled data are not correlated well enough. We optimize based on maximizing not only the zero-lag global correlation but also time or space lags of the modeled data to circumvent the half-cycle limit. We use a weighting function that is maximum value at zero lag and decays away from zero lag to balance the role of the lags. The resulting objective function is less sensitive to the choice of the maximum lag allowed and has a wider region of convergence compared with standard FWI. Furthermore, we develop a selective function, which passes to the gradient calculation only positive correlations, to mitigate cycle skipping. Finally, the resulting algorithm has better convergence behavior than conventional methods. Application to the Marmousi model indicates that this method converges starting with a linearly increasing velocity model, even with data free of frequencies less than 3.5 Hz. Application to the SEG2014 data set demonstrates the potential of our method.


2021 ◽  
Vol 178 (2) ◽  
pp. 423-448
Author(s):  
Ursula Iturrarán-Viveros ◽  
Andrés M. Muñoz-García ◽  
Octavio Castillo-Reyes ◽  
Khemraj Shukla

AbstractWe use machine learning algorithms (artificial neural networks, ANNs) to estimate petrophysical models at seismic scale combining well-log information, seismic data and seismic attributes. The resulting petrophysical images are the prior inputs in the process of full-waveform inversion (FWI). We calculate seismic attributes from a stacked reflected 2-D seismic section and then train ANNs to approximate the following petrophysical parameters: P-wave velocity ($$V_\mathrm{{p}}$$ V p ), density ($$\rho $$ ρ ) and volume of clay ($$V_\mathrm{{clay}}$$ V clay ). We extend the use of the $$V_\mathrm{{clay}}$$ V clay by constraining it with the well lithology and we establish two classes: sands and shales. Consequently, machine learning allows us to build an initial estimate of the earth property model ($$V_\mathrm{{p}}$$ V p ), which is iteratively refined to produce a synthetic seismogram that matches the observed seismic data. We apply the 1-D Kennett method as a forward modeling tool to create synthetic data with the images of $$V_\mathrm{{p}}$$ V p , $$\rho $$ ρ and the thickness of layers (sands or shales) obtained with the ANNs. A nonlinear least-squares inversion algorithm minimizes the residual (or misfit) between observed and synthetic full-waveform data, which improves the $$V_\mathrm{{p}}$$ V p resolution. In order to show the advantage of using the ANN velocity model as the initial velocity model for the inversion, we compare the results obtained with the ANNs and two other initial velocity models. One of these alternative initial velocity models is computed via P-wave impedance, and the other is achieved by velocity semblance analysis: root-mean-square velocity (RMS). The results are in good agreement when we use $$\rho $$ ρ and $$V_\mathrm{{p}}$$ V p obtained by ANNs. However, the results are poor and the synthetic data do not match the real acquired data when using the semblance velocity model and the $$\rho $$ ρ from the well log (constant for the entire 2-D section). Nevertheless, the results improve when including $$\rho $$ ρ , the layered structure driven by the $$V_\mathrm{{clay}}$$ V clay (both obtained with ANNs) and the semblance velocity model. When doing inversion starting with the initial $$V_\mathrm{{p}}$$ V p model estimated using the P-wave impedance, there is some gain of the final $$V_\mathrm{{p}}$$ V p with respect to the RMS initial $$V_\mathrm{{p}}$$ V p . To assess the quality of the inversion of $$V_\mathrm{{p}}$$ V p , we use the information for two available wells and compare the final $$V_\mathrm{{p}}$$ V p obtained with ANNs and the final $$V_\mathrm{{p}}$$ V p computed with the P-wave impedance. This shows the benefit of employing ANNs estimations as prior models during the inversion process to obtain a final $$V_\mathrm{{p}}$$ V p that is in agreement with the geology and with the seismic and well-log data. To illustrate the computation of the final velocity model via FWI, we provide an algorithm with the detailed steps and its corresponding GitHub code.


Author(s):  
Ehsan Jamali Hondori ◽  
Chen Guo ◽  
Hitoshi Mikada ◽  
Jin-Oh Park

AbstractFull-waveform inversion (FWI) of limited-offset marine seismic data is a challenging task due to the lack of refracted energy and diving waves from the shallow sediments, which are fundamentally required to update the long-wavelength background velocity model in a tomographic fashion. When these events are absent, a reliable initial velocity model is necessary to ensure that the observed and simulated waveforms kinematically fit within an error of less than half a wavelength to protect the FWI iterative local optimization scheme from cycle skipping. We use a migration-based velocity analysis (MVA) method, including a combination of the layer-stripping approach and iterations of Kirchhoff prestack depth migration (KPSDM), to build an accurate initial velocity model for the FWI application on 2D seismic data with a maximum offset of 5.8 km. The data are acquired in the Japan Trench subduction zone, and we focus on the area where the shallow sediments overlying a highly reflective basement on top of the Cretaceous erosional unconformity are severely faulted and deformed. Despite the limited offsets available in the seismic data, our carefully designed workflow for data preconditioning, initial model building, and waveform inversion provides a velocity model that could improve the depth images down to almost 3.5 km. We present several quality control measures to assess the reliability of the resulting FWI model, including ray path illuminations, sensitivity kernels, reverse time migration (RTM) images, and KPSDM common image gathers. A direct comparison between the FWI and MVA velocity profiles reveals a sharp boundary at the Cretaceous basement interface, a feature that could not be observed in the MVA velocity model. The normal faults caused by the basal erosion of the upper plate in the study area reach the seafloor with evident subsidence of the shallow strata, implying that the faults are active.


2021 ◽  
Vol 40 (5) ◽  
pp. 324-334
Author(s):  
Rongxin Huang ◽  
Zhigang Zhang ◽  
Zedong Wu ◽  
Zhiyuan Wei ◽  
Jiawei Mei ◽  
...  

Seismic imaging using full-wavefield data that includes primary reflections, transmitted waves, and their multiples has been the holy grail for generations of geophysicists. To be able to use the full-wavefield data effectively requires a forward-modeling process to generate full-wavefield data, an inversion scheme to minimize the difference between modeled and recorded data, and, more importantly, an accurate velocity model to correctly propagate and collapse energy of different wave modes. All of these elements have been embedded in the framework of full-waveform inversion (FWI) since it was proposed three decades ago. However, for a long time, the application of FWI did not find its way into the domain of full-wavefield imaging, mostly owing to the lack of data sets with good constraints to ensure the convergence of inversion, the required compute power to handle large data sets and extend the inversion frequency to the bandwidth needed for imaging, and, most significantly, stable FWI algorithms that could work with different data types in different geologic settings. Recently, with the advancement of high-performance computing and progress in FWI algorithms at tackling issues such as cycle skipping and amplitude mismatch, FWI has found success using different data types in a variety of geologic settings, providing some of the most accurate velocity models for generating significantly improved migration images. Here, we take a step further to modify the FWI workflow to output the subsurface image or reflectivity directly, potentially eliminating the need to go through the time-consuming conventional seismic imaging process that involves preprocessing, velocity model building, and migration. Compared with a conventional migration image, the reflectivity image directly output from FWI often provides additional structural information with better illumination and higher signal-to-noise ratio naturally as a result of many iterations of least-squares fitting of the full-wavefield data.


2018 ◽  
Vol 8 (2) ◽  
Author(s):  
Katherine Flórez ◽  
Sergio Alberto Abreo Carrillo ◽  
Ana Beatriz Ramírez Silva

Full Waveform Inversion (FWI) schemes are gradually becoming more common in the oil and gas industry, as a new tool for studying complex geological zones, based on their reliability for estimating velocity models. FWI is a non-linear inversion method that iteratively estimates subsurface characteristics such as seismic velocity, starting from an initial velocity model and the preconditioned data acquired. Blended sources have been used in marine seismic acquisitions to reduce acquisition costs, reducing the number of times that the vessel needs to cross the exploration delineation trajectory. When blended or simultaneous without previous de-blending or separation, stage data are used in the reconstruction of the velocity model with the FWI method, and the computational time is reduced. However, blended data implies overlapping single shot-gathers, producing interference that affects the result of seismic approaches, such as FWI or seismic image migration. In this document, an encoding strategy is developed, which reduces the overlap areas within the blended data to improve the final velocity model with the FWI method.


Geophysics ◽  
2020 ◽  
pp. 1-50
Author(s):  
Yulang Wu ◽  
George A. McMechan

Conventional full waveform inversion (FWI) updates a velocity model by minimizing the data residuals between predicted and observed data, at the receiver positions. We propose a new full waveform inversion to update the velocity model by minimizing virtual source artifacts, at the receiver positions, in the source domain (SFWI). Virtual source artifacts are created by replacing the propagating source wavefield by the forward-time observed data at the receiver positions, as a data-residual constraint. Therefore, no matter whether the velocity model is correct or not, the data residuals, at the receiver positions, are always forced to be zero. If the velocity model is correct, this data-residual constraint has no effect on the wavefield, since the predicted data is the same as the observed data. However, if the estimated velocity model is incorrect, the mismatch between the replaced forward-time observed data and the incorrect predicted upgoing waves (e.g., reflected waves) at the receiver positions, will produce downgoing artifact waves. Thus, the data-residual constraint behaves as a virtual source to create artifact wavefields. By minimizing the virtual source artifacts (equivalent to producing the artifact wavefield), the velocity model can be iteratively updated toward the true velocity model. Similar to conventional FWI, SFWI can be implemented in either the frequency or the time domain, which is unlike previous source-domain solutions, which have to be implemented only in the frequency domain, to solve the normal equations. SFWI does more over-fitting of noisy observed data than conventional FWI does, because noise is amplified by the differential operators when calculating the virtual source artifacts. Tests on synthetic data show that the SFWI inverts for the velocity model more accurately than conventional FWI for noise-free or low-noise data.


Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. A33-A37 ◽  
Author(s):  
Amsalu Y. Anagaw ◽  
Mauricio D. Sacchi

Full-waveform inversion (FWI) can provide accurate estimates of subsurface model parameters. In spite of its success, the application of FWI in areas with high-velocity contrast remains a challenging problem. Quadratic regularization methods are often adopted to stabilize inverse problems. Unfortunately, edges and sharp discontinuities are not adequately preserved by quadratic regularization techniques. Throughout the iterative FWI method, an edge-preserving filter, however, can gently incorporate sharpness into velocity models. For every point in the velocity model, edge-preserving smoothing assigns the average value of the most uniform window neighboring the point. Edge-preserving smoothing generates piecewise-homogeneous images with enhanced contrast at boundaries. We adopt a simultaneous-source frequency-domain FWI, based on quasi-Newton optimization, in conjunction with an edge-preserving smoothing filter to retrieve high-contrast velocity models. The edge-preserving smoothing filter gradually removes the artifacts created by simultaneous-source encoding. We also have developed a simple model update to prevent disrupting the convergence of the optimization algorithm. Finally, we perform tests to examine our algorithm.


Geophysics ◽  
2018 ◽  
Vol 83 (1) ◽  
pp. A13-A20 ◽  
Author(s):  
Zhiguang Xue ◽  
Junzhe Sun ◽  
Sergey Fomel ◽  
Tieyuan Zhu

The calculation of the gradient in full-waveform inversion (FWI) usually involves crosscorrelating the forward-propagated source wavefield and the back-propagated data residual wavefield at each time step. In the real earth, propagating waves are typically attenuated due to the viscoelasticity, which results in an attenuated gradient for FWI. Replacing the attenuated true gradient with a [Formula: see text]-compensated gradient can accelerate the convergence rate of the inversion process. We have used a phase-dispersion and an amplitude-loss decoupled constant-[Formula: see text] wave equation to formulate a viscoacoustic FWI. We used this wave equation to generate a [Formula: see text]-compensated gradient, which recovers amplitudes while preserving the correct kinematics. We construct an exact adjoint operator in a discretized form using the low-rank wave extrapolation technique, and we implement the gradient compensation by reversing the sign of the amplitude-loss term in the forward and adjoint operators. This leads to a [Formula: see text]-dependent gradient preconditioning method. Using numerical tests with synthetic data, we demonstrate that the proposed viscoacoustic FWI using a constant-[Formula: see text] wave equation is capable of producing high-quality velocity models, and our [Formula: see text]-compensated gradient accelerates its convergence rate.


Sign in / Sign up

Export Citation Format

Share Document