Fast least-squares reverse time migration of VSP free-surface multiples with dynamic phase-encoding schemes

Geophysics ◽  
2018 ◽  
Vol 83 (4) ◽  
pp. S321-S332 ◽  
Author(s):  
Xuejian Liu ◽  
Yike Liu ◽  
Majid Khan

For vertical seismic profile (VSP), free-surface multiples can provide much wider subsurface illumination when compared with primaries. However, migration of multiple reflections generates not only the desired image of reflection interfaces but also many crosstalk artifacts. Therefore, the least-squares reverse time migration method is used to image the VSP downgoing free-surface multiples (receiver-side ghosts) and iteratively suppress crosstalks, in which full downgoing data (including direct waves) and downgoing multiples are used as sources and observed data, respectively. To reduce the computational cost, we have developed the simultaneous imaging of different common-receiver gathers that are dynamically blended together with iterations through the altered realizations of the phase-encoding function. Relative to the popular encoding function with a combination of random time delays and polarities, only the random polarities can be applied for further increasing the computational efficiency. Synthetic experiments on Sigsbee2B and Pluto1.5 models indicate that the proposed method can effectively eliminate crosstalk artifacts and improve imaging resolution while calculated even more efficiently than reverse time migration of VSP ghosts.

Geophysics ◽  
2018 ◽  
Vol 83 (6) ◽  
pp. S477-S487 ◽  
Author(s):  
Xuejian Liu ◽  
Yike Liu

Free-surface multiples have been used in the reverse time migration (RTM) procedure to provide additional subsurface illumination. However, imaging multiple reflections with conventional RTM operators generates many crosstalk artifacts. Least-squares RTM (LSRTM) can be used to iteratively suppress crosstalk artifacts of multiples; however, the method is computationally intensive. By applying the linear Radon transformation to hundreds of shots of acquired data to produce dozens of plane-wave gathers, we have developed plane-wave domain LSRTM with free-surface multiples, which could efficiently provide images from the multiples with the crosstalk artifacts effectively suppressed. The proposed method has high computational efficiency when the dynamic plane-wave encoding scheme is used, in which only one or two plane-wave gathers of multiples are migrated at each iteration. We apply the method to numerical Pluto1.5 data and find that the proposed method can reduce most crosstalk artifacts and enhance spatial resolution, using even less computational time relative to RTM with multiples. Furthermore, joint imaging of primaries and multiples by plane-wave LSRTM can provide broader illumination and higher fold for the subsurface when compared with the imaging process with primaries only.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. S171-S185 ◽  
Author(s):  
Chuang Li ◽  
Jianping Huang ◽  
Zhenchun Li ◽  
Han Yu ◽  
Rongrong Wang

Least-squares migration (LSM) of seismic data is supposed to produce images of subsurface structures with better quality than standard migration if we have an accurate migration velocity model. However, LSM suffers from data mismatch problems and migration artifacts when noise pollutes the recorded profiles. This study has developed a reweighted least-squares reverse time migration (RWLSRTM) method to overcome the problems caused by such noise. We first verify that spiky noise and free-surface multiples lead to the mismatch problems and should be eliminated from the data residual. The primary- and multiple-guided weighting matrices are then derived for RWLSRTM to reduce the noise in the data residual. The weighting matrices impose constraints on the data residual such that spiky noise and free-surface multiple reflections are reduced whereas primary reflections are preserved. The weights for spiky noise and multiple reflections are controlled by a dynamic threshold parameter decreasing with iterations for better results. Finally, we use an iteratively reweighted least-squares algorithm to minimize the weighted data residual. We conduct numerical tests using the synthetic data and compared the results of this method with the results of standard LSRTM. The results suggest that RWLSRTM is more robust than standard LSRTM when the seismic data contain spiky noise and multiple reflections. Moreover, our method not only suppresses the migration artifacts, but it also accelerates the convergence.


Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. R135-R146 ◽  
Author(s):  
Wei Dai ◽  
Xin Wang ◽  
Gerard T. Schuster

Least-squares migration (LSM) has been shown to be able to produce high-quality migration images, but its computational cost is considered to be too high for practical imaging. We have developed a multisource least-squares migration algorithm (MLSM) to increase the computational efficiency by using the blended sources processing technique. To expedite convergence, a multisource deblurring filter is used as a preconditioner to reduce the data residual. This MLSM algorithm is applicable with Kirchhoff migration, wave-equation migration, or reverse time migration, and the gain in computational efficiency depends on the choice of migration method. Numerical results with Kirchhoff LSM on the 2D SEG/EAGE salt model show that an accurate image is obtained by migrating a supergather of 320 phase-encoded shots. When the encoding functions are the same for every iteration, the input/output cost of MLSM is reduced by 320 times. Empirical results show that the crosstalk noise introduced by blended sources is more effectively reduced when the encoding functions are changed at every iteration. The analysis of signal-to-noise ratio (S/N) suggests that not too many iterations are needed to enhance the S/N to an acceptable level. Therefore, when implemented with wave-equation migration or reverse time migration methods, the MLSM algorithm can be more efficient than the conventional migration method.


Geophysics ◽  
2021 ◽  
pp. 1-73
Author(s):  
Milad Farshad ◽  
Hervé Chauris

Elastic least-squares reverse time migration is the state-of-the-art linear imaging technique to retrieve high-resolution quantitative subsurface images. A successful application requires many migration/modeling cycles. To accelerate the convergence rate, various pseudoinverse Born operators have been proposed, providing quantitative results within a single iteration, while having roughly the same computational cost as reverse time migration. However, these are based on the acoustic approximation, leading to possible inaccurate amplitude predictions as well as the ignorance of S-wave effects. To solve this problem, we extend the pseudoinverse Born operator from acoustic to elastic media to account for the elastic amplitudes of PP reflections and provide an estimate of physical density, P- and S-wave impedance models. We restrict the extension to marine environment, with the recording of pressure waves at the receiver positions. Firstly, we replace the acoustic Green's functions by their elastic version, without modifying the structure of the original pseudoinverse Born operator. We then apply a Radon transform to the results of the first step to calculate the angle-dependent response. Finally, we simultaneously invert for the physical parameters using a weighted least-squares method. Through numerical experiments, we first illustrate the consequences of acoustic approximation on elastic data, leading to inaccurate parameter inversion as well as to artificial reflector inclusion. Then we demonstrate that our method can simultaneously invert for elastic parameters in the presence of complex uncorrelated structures, inaccurate background models, and Gaussian noisy data.


Geophysics ◽  
2020 ◽  
pp. 1-61
Author(s):  
Janaki Vamaraju ◽  
Jeremy Vila ◽  
Mauricio Araya-Polo ◽  
Debanjan Datta ◽  
Mohamed Sidahmed ◽  
...  

Migration techniques are an integral part of seismic imaging workflows. Least-squares reverse time migration (LSRTM) overcomes some of the shortcomings of conventional migration algorithms by compensating for illumination and removing sampling artifacts to increase spatial resolution. However, the computational cost associated with iterative LSRTM is high and convergence can be slow in complex media. We implement pre-stack LSRTM in a deep learning framework and adopt strategies from the data science domain to accelerate convergence. The proposed hybrid framework leverages the existing physics-based models and machine learning optimizers to achieve better and cheaper solutions. Using a time-domain formulation, we show that mini-batch gradients can reduce the computation cost by using a subset of total shots for each iteration. Mini-batch approach does not only reduce source cross-talk but also is less memory intensive. Combining mini-batch gradients with deep learning optimizers and loss functions can improve the efficiency of LSRTM. Deep learning optimizers such as the adaptive moment estimation are generally well suited for noisy and sparse data. We compare different optimizers and demonstrate their efficacy in mitigating migration artifacts. To accelerate the inversion, we adopt the regularised Huber loss function in conjunction. We apply these techniques to 2D Marmousi and 3D SEG/EAGE salt models and show improvements over conventional LSRTM baselines. The proposed approach achieves higher spatial resolution in less computation time measured by various qualitative and quantitative evaluation metrics.


Geophysics ◽  
2015 ◽  
Vol 80 (6) ◽  
pp. S223-S235 ◽  
Author(s):  
Mandy Wong ◽  
Biondo L. Biondi ◽  
Shuki Ronen

2021 ◽  
Vol 18 (1) ◽  
pp. 94-100
Author(s):  
Sun Xiao-Dong ◽  
Teng Hou-Hua ◽  
Ren Li-Juan ◽  
Wang Wei-Qi ◽  
Li Zhen-Chun

Geophysics ◽  
2014 ◽  
Vol 79 (1) ◽  
pp. S11-S21 ◽  
Author(s):  
Dongliang Zhang ◽  
Gerard T. Schuster

The theory of least-squares reverse time migration of multiples (RTMM) is presented. In this method, least squares migration (LSM) is used to image free-surface multiples where the recorded traces are used as the time histories of the virtual sources at the hydrophones and the surface-related multiples are the observed data. For a single source, the entire free-surface becomes an extended virtual source where the downgoing free-surface multiples more fully illuminate the subsurface compared to the primaries. Since each recorded trace is treated as the time history of a virtual source, knowledge of the source wavelet is not required and the ringy time series for each source is automatically deconvolved. If the multiples can be perfectly separated from the primaries, numerical tests on synthetic data for the Sigsbee2B and Marmousi2 models show that least-squares reverse time migration of multiples (LSRTMM) can significantly improve the image quality compared to RTMM or standard reverse time migration (RTM) of primaries. However, if there is imperfect separation and the multiples are strongly interfering with the primaries then LSRTMM images show no significant advantage over the primary migration images. In some cases, they can be of worse quality. Applying LSRTMM to Gulf of Mexico data shows higher signal-to-noise imaging of the salt bottom and top compared to standard RTM images. This is likely attributed to the fact that the target body is just below the sea bed so that the deep water multiples do not have strong interference with the primaries. Migrating a sparsely sampled version of the Marmousi2 ocean bottom seismic data shows that LSM of primaries and LSRTMM provides significantly better imaging than standard RTM. A potential liability of LSRTMM is that multiples require several round trips between the reflector and the free surface, so that high frequencies in the multiples suffer greater attenuation compared to the primary reflections. This can lead to lower resolution in the migration image compared to that computed from primaries. Another liability is that the multiple migration image is more down-dip limited than the standard primaries migration image. Finally, if the surface-related multiple elimination method is imperfect and there are strong multiples interfering with the primaries, then the resulting LSRTMM image can be significantly degraded. We conclude that LSRTMM can be a useful complement, not a replacement, for RTM of primary reflections.


Geophysics ◽  
2020 ◽  
Vol 85 (2) ◽  
pp. S115-S134
Author(s):  
Wenlei Gao ◽  
Gian Matharu ◽  
Mauricio D. Sacchi

Least-squares reverse time migration (LSRTM) has become increasingly popular for complex wavefield imaging due to its ability to equalize image amplitudes, attenuate migration artifacts, handle incomplete and noisy data, and improve spatial resolution. The major drawback of LSRTM is the considerable computational cost incurred by performing migration/demigration at each iteration of the optimization. To ameliorate the computational cost, we introduced a fast method to solve the LSRTM problem in the image domain. Our method is based on a new factorization that approximates the Hessian using a superposition of Kronecker products. The Kronecker factors are small matrices relative to the size of the Hessian. Crucially, the factorization is able to honor the characteristic block-band structure of the Hessian. We have developed a computationally efficient algorithm to estimate the Kronecker factors via low-rank matrix completion. The completion algorithm uses only a small percentage of preferentially sampled elements of the Hessian matrix. Element sampling requires computation of the source and receiver Green’s functions but avoids explicitly constructing the entire Hessian. Our Kronecker-based factorization leads to an imaging technique that we name Kronecker-LSRTM (KLSRTM). The iterative solution of the image-domain KLSRTM is fast because we replace computationally expensive migration/demigration operations with fast matrix multiplications involving small matrices. We first validate the efficacy of our method by explicitly computing the Hessian for a small problem. Subsequent 2D numerical tests compare LSRTM with KLSRTM for several benchmark models. We observe that KLSRTM achieves near-identical images to LSRTM at a significantly reduced computational cost (approximately 5–15× faster); however, KLSRTM has an increased, yet manageable, memory cost.


Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. R725-R739 ◽  
Author(s):  
Kai Yang ◽  
Jianfeng Zhang

The Born approximation and the Kirchhoff approximation are two frameworks that are extensively used in solving seismic migration/inversion problems. Both approximations assume a linear relationship between the primary reflected/scattered data to the corresponding physical model. However, different approximations result in different behaviors. For least-squares reverse time migration (LSRTM), most of the algorithms are constructed based on Born approximation. We have constructed a pair of Kirchhoff modeling and migration operators based on the Born modeling operator and the connection between the perturbation model and the reflectivity model, and then we compared the different performances between Born and Kirchhoff operators for LSRTM. Numerical examples on Marmousi model and SEAM 2D salt model indicate that LSRTM with Kirchhoff operators is a better alternative to that with Born operators for imaging complex structures. To reduce the computational cost, we also investigate a strategy by restricting the propagation of the background wavefield to a stopping time rather than the maximum recording time. And this stopping time can be chosen as half of the maximum recording time. This computational strategy can be used in LSRTM procedures of predicting the primary reflected data, calculating the step length, and computing the gradient. Theoretical analyses and numerical experiments are given to justify this computational strategy for LSRTM.


Sign in / Sign up

Export Citation Format

Share Document