Imaging with primaries and free-surface multiples by joint least-squares reverse time migration

Geophysics ◽  
2015 ◽  
Vol 80 (6) ◽  
pp. S223-S235 ◽  
Author(s):  
Mandy Wong ◽  
Biondo L. Biondi ◽  
Shuki Ronen
Geophysics ◽  
2014 ◽  
Vol 79 (1) ◽  
pp. S11-S21 ◽  
Author(s):  
Dongliang Zhang ◽  
Gerard T. Schuster

The theory of least-squares reverse time migration of multiples (RTMM) is presented. In this method, least squares migration (LSM) is used to image free-surface multiples where the recorded traces are used as the time histories of the virtual sources at the hydrophones and the surface-related multiples are the observed data. For a single source, the entire free-surface becomes an extended virtual source where the downgoing free-surface multiples more fully illuminate the subsurface compared to the primaries. Since each recorded trace is treated as the time history of a virtual source, knowledge of the source wavelet is not required and the ringy time series for each source is automatically deconvolved. If the multiples can be perfectly separated from the primaries, numerical tests on synthetic data for the Sigsbee2B and Marmousi2 models show that least-squares reverse time migration of multiples (LSRTMM) can significantly improve the image quality compared to RTMM or standard reverse time migration (RTM) of primaries. However, if there is imperfect separation and the multiples are strongly interfering with the primaries then LSRTMM images show no significant advantage over the primary migration images. In some cases, they can be of worse quality. Applying LSRTMM to Gulf of Mexico data shows higher signal-to-noise imaging of the salt bottom and top compared to standard RTM images. This is likely attributed to the fact that the target body is just below the sea bed so that the deep water multiples do not have strong interference with the primaries. Migrating a sparsely sampled version of the Marmousi2 ocean bottom seismic data shows that LSM of primaries and LSRTMM provides significantly better imaging than standard RTM. A potential liability of LSRTMM is that multiples require several round trips between the reflector and the free surface, so that high frequencies in the multiples suffer greater attenuation compared to the primary reflections. This can lead to lower resolution in the migration image compared to that computed from primaries. Another liability is that the multiple migration image is more down-dip limited than the standard primaries migration image. Finally, if the surface-related multiple elimination method is imperfect and there are strong multiples interfering with the primaries, then the resulting LSRTMM image can be significantly degraded. We conclude that LSRTMM can be a useful complement, not a replacement, for RTM of primary reflections.


Geophysics ◽  
2018 ◽  
Vol 83 (6) ◽  
pp. S477-S487 ◽  
Author(s):  
Xuejian Liu ◽  
Yike Liu

Free-surface multiples have been used in the reverse time migration (RTM) procedure to provide additional subsurface illumination. However, imaging multiple reflections with conventional RTM operators generates many crosstalk artifacts. Least-squares RTM (LSRTM) can be used to iteratively suppress crosstalk artifacts of multiples; however, the method is computationally intensive. By applying the linear Radon transformation to hundreds of shots of acquired data to produce dozens of plane-wave gathers, we have developed plane-wave domain LSRTM with free-surface multiples, which could efficiently provide images from the multiples with the crosstalk artifacts effectively suppressed. The proposed method has high computational efficiency when the dynamic plane-wave encoding scheme is used, in which only one or two plane-wave gathers of multiples are migrated at each iteration. We apply the method to numerical Pluto1.5 data and find that the proposed method can reduce most crosstalk artifacts and enhance spatial resolution, using even less computational time relative to RTM with multiples. Furthermore, joint imaging of primaries and multiples by plane-wave LSRTM can provide broader illumination and higher fold for the subsurface when compared with the imaging process with primaries only.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. S171-S185 ◽  
Author(s):  
Chuang Li ◽  
Jianping Huang ◽  
Zhenchun Li ◽  
Han Yu ◽  
Rongrong Wang

Least-squares migration (LSM) of seismic data is supposed to produce images of subsurface structures with better quality than standard migration if we have an accurate migration velocity model. However, LSM suffers from data mismatch problems and migration artifacts when noise pollutes the recorded profiles. This study has developed a reweighted least-squares reverse time migration (RWLSRTM) method to overcome the problems caused by such noise. We first verify that spiky noise and free-surface multiples lead to the mismatch problems and should be eliminated from the data residual. The primary- and multiple-guided weighting matrices are then derived for RWLSRTM to reduce the noise in the data residual. The weighting matrices impose constraints on the data residual such that spiky noise and free-surface multiple reflections are reduced whereas primary reflections are preserved. The weights for spiky noise and multiple reflections are controlled by a dynamic threshold parameter decreasing with iterations for better results. Finally, we use an iteratively reweighted least-squares algorithm to minimize the weighted data residual. We conduct numerical tests using the synthetic data and compared the results of this method with the results of standard LSRTM. The results suggest that RWLSRTM is more robust than standard LSRTM when the seismic data contain spiky noise and multiple reflections. Moreover, our method not only suppresses the migration artifacts, but it also accelerates the convergence.


Geophysics ◽  
2018 ◽  
Vol 83 (4) ◽  
pp. S321-S332 ◽  
Author(s):  
Xuejian Liu ◽  
Yike Liu ◽  
Majid Khan

For vertical seismic profile (VSP), free-surface multiples can provide much wider subsurface illumination when compared with primaries. However, migration of multiple reflections generates not only the desired image of reflection interfaces but also many crosstalk artifacts. Therefore, the least-squares reverse time migration method is used to image the VSP downgoing free-surface multiples (receiver-side ghosts) and iteratively suppress crosstalks, in which full downgoing data (including direct waves) and downgoing multiples are used as sources and observed data, respectively. To reduce the computational cost, we have developed the simultaneous imaging of different common-receiver gathers that are dynamically blended together with iterations through the altered realizations of the phase-encoding function. Relative to the popular encoding function with a combination of random time delays and polarities, only the random polarities can be applied for further increasing the computational efficiency. Synthetic experiments on Sigsbee2B and Pluto1.5 models indicate that the proposed method can effectively eliminate crosstalk artifacts and improve imaging resolution while calculated even more efficiently than reverse time migration of VSP ghosts.


Geophysics ◽  
2021 ◽  
pp. 1-73
Author(s):  
Milad Farshad ◽  
Hervé Chauris

Elastic least-squares reverse time migration is the state-of-the-art linear imaging technique to retrieve high-resolution quantitative subsurface images. A successful application requires many migration/modeling cycles. To accelerate the convergence rate, various pseudoinverse Born operators have been proposed, providing quantitative results within a single iteration, while having roughly the same computational cost as reverse time migration. However, these are based on the acoustic approximation, leading to possible inaccurate amplitude predictions as well as the ignorance of S-wave effects. To solve this problem, we extend the pseudoinverse Born operator from acoustic to elastic media to account for the elastic amplitudes of PP reflections and provide an estimate of physical density, P- and S-wave impedance models. We restrict the extension to marine environment, with the recording of pressure waves at the receiver positions. Firstly, we replace the acoustic Green's functions by their elastic version, without modifying the structure of the original pseudoinverse Born operator. We then apply a Radon transform to the results of the first step to calculate the angle-dependent response. Finally, we simultaneously invert for the physical parameters using a weighted least-squares method. Through numerical experiments, we first illustrate the consequences of acoustic approximation on elastic data, leading to inaccurate parameter inversion as well as to artificial reflector inclusion. Then we demonstrate that our method can simultaneously invert for elastic parameters in the presence of complex uncorrelated structures, inaccurate background models, and Gaussian noisy data.


Geophysics ◽  
2021 ◽  
pp. 1-65
Author(s):  
Yingming Qu ◽  
Yixin Wang ◽  
Zhenchun Li ◽  
Chang Liu

Seismic wave attenuation caused by subsurface viscoelasticity reduces the quality of migration and the reliability of interpretation. A variety of Q-compensated migration methods have been developed based on the second-order viscoacoustic quasidifferential equations. However, these second-order wave-equation-based methods are difficult to handle with density perturbation and surface topography. In addition, the staggered grid scheme, which has an advantage over the collocated grid scheme because of its reduced numerical dispersion and enhanced stability, works in first-order wave-equation-based methods. We have developed a Q least-squares reverse time migration method based on the first-order viscoacoustic quasidifferential equations by deriving Q-compensated forward-propagated operators, Q-compensated adjoint operators, and Q-attenuated Born modeling operators. Besides, our method using curvilinear grids is available even when the attenuating medium has surface topography and can conduct Q-compensated migration with density perturbation. The results of numerical tests on two synthetic and a field data sets indicate that our method improves the imaging quality with iterations and produces better imaging results with clearer structures, higher signal-to-noise ratio, higher resolution, and more balanced amplitude by correcting the energy loss and phase distortion caused by Q attenuation. It also suppresses the scattering and diffracted noise caused by the surface topography.


Sign in / Sign up

Export Citation Format

Share Document