Up/down separation of seismic depth images

Geophysics ◽  
2018 ◽  
Vol 83 (5) ◽  
pp. S375-S385 ◽  
Author(s):  
Eric Duveneck

Reverse time migration (RTM) is normally based on wavefield modeling that allows wave propagation in all spatial directions. While this is one of the strengths of RTM, it can also lead to undesired effects, including partial image amplitude cancellation for reflectors that are illuminated and imaged from two sides, as well as the appearance of ghost-reflection artifacts if the modeled source- and receiver-side wavefields are both scattered back from a hard model contrast. Both issues can be addressed by separating the seismic depth image into components imaged from above and components imaged from below. I derive and compare two methods that directly achieve such an image up/down separation, without relying on an up/down separation of the individual simulated wavefields used for imaging. The first method is based on the formation of time-shift gathers during imaging and filtering out events with either positive or negative slopes in these gathers, corresponding to imaging from below or above, respectively. The second method is a new image up/down separation approach inspired by previously published wavefield up/down separation approaches. It involves combining a migrated image with an additional version of the image, obtained by applying a temporal Hilbert transform to the input data and a subsequent Hilbert transform in depth on the migrated image. Compared with approaches based on up/down separation of the individual wavefields, the presented direct image up/down separation methods have distinctive advantages. While the approach based on filtering of time-shift gathers is efficient and offers considerable flexibility, the approach based on Hilbert transforms is attractive because of its simplicity since no changes to the migration algorithm itself are required. I demonstrate both image up/down separation methods on synthetic and real data and show that both methods lead to very similar results.

2019 ◽  
Vol 16 (5) ◽  
pp. 894-912
Author(s):  
Feipeng Li ◽  
Jinghuai Gao ◽  
Zhaoqi Gao ◽  
Xiudi Jiang ◽  
Wenbo Sun

Abstract Reverse time migration (RTM) has shown a significant advantage over other imaging algorithms for imaging complex subsurface structures. However, low-wavenumber noise severely contaminates the image, which is one of the main issues in the RTM algorithm. To attenuate the undesired low-wavenumber noise, the causal imaging condition based on wavefield decomposition has been proposed. First, wavefield decompositions are performed to separate the wavefields as up-going and down-going wave components, respectively. Then, to preserve causality, it constructs images by correlating wave components that propagate in different directions. We build a causal imaging condition in this paper. Not only does it consider the up/down wavefield decomposition, but it also applies the decomposition on the horizontal direction to enhance the image quality especially for steeply dipping structures. The wavefield decomposition is conventionally achieved by the frequency-wavenumber (F-K) transform that is very computationally intensive compared with the wave propagation process of the RTM algorithm. To improve the efficiency of the algorithm, we propose a fast implementation to perform wavefield separation using the discrete Hilbert transform via the Graphics Processing Unit. Numerical tests on both the synthetic models and a real data example demonstrate the effectiveness of the proposed method and the efficiency of the optimized implementation scheme. This new imaging condition shows its ability to produce high image quality when applied to both the RTM stack image and also the angle domain common image gathers. The comparison of the total elapsed time for different methods verifies the efficiency of the optimized algorithm.


2014 ◽  
Vol 962-965 ◽  
pp. 2984-2987
Author(s):  
Jia Jia Yang ◽  
Bing Shou He ◽  
Ting Chen

Based on two-way acoustic wave equation, we present a method for computing angle-domain common-image gathers for reverse time migration. The method calculates the propagation direction of source wave-fields and receiver wave-fields according to expression of energy flow density vectors (Poynting vectors) of acoustic wave equation in space-time domain to obtain the reflection angle, then apply the normalized cross-correlation imaging condition to achieve the angle-domain common-image gathers. The angle gathers obtained can be used for migration velocity analysis, AVA analysis and so on. Numerical examples and real data examples demonstrate the effectiveness of this method.


Geophysics ◽  
1997 ◽  
Vol 62 (3) ◽  
pp. 906-917 ◽  
Author(s):  
Jinming Zhu ◽  
Larry R. Lines

Reverse‐time migration applies finite‐difference wave equation solutions by using unaliased time‐reversed recorded traces as seismic sources. Recorded data can be sparsely or irregularly sampled relative to a finely spaced finite‐difference mesh because of the nature of seismic acquisition. Fortunately, reliable interpolation of missing traces is implicitly included in the reverse‐time wave equation computations. This implicit interpolation is essentially based on the ability of the wavefield to “heal itself” during propagation. Both synthetic and real data examples demonstrate that reverse‐time migration can often be performed effectively without the need for explicit interpolation of missing traces.


Geophysics ◽  
2012 ◽  
Vol 77 (5) ◽  
pp. S105-S115 ◽  
Author(s):  
Rui Yan ◽  
Xiao-Bi Xie

An angle-domain imaging condition is recommended for multicomponent elastic reverse time migration. The local slant stack method is used to separate source and receiver waves into P- and S-waves and simultaneously decompose them into local plane waves along different propagation directions. We calculated the angle-domain partial images by crosscorrelating every possible combination of the incident and scattered plane P- and S-waves and then organized them into P-P and P-S local image matrices. Local image matrix preserves all the angle information related to the seismic events. Thus, by working in the image matrix, it is convenient to perform different angle-domain operations (e.g., filtering artifacts, correcting polarity, or conducting illumination and acquisition aperture compensations). Because local image matrix is localized in space, these operations can be designed to be highly flexible, e.g., target-oriented, dip-angle-dependent or reflection-angle-dependent. After performing angle-domain operations, we can stack the partial images in the local image matrix to generate the depth image, or partially sum them up to produce different angle-domain common image gathers, which can be used for amplitude versus angle and migration velocity analysis. We tested several numerical examples to demonstrate the applications of this angle-domain image condition.


2017 ◽  
Vol 5 (3) ◽  
pp. SN1-SN11 ◽  
Author(s):  
Chong Zeng ◽  
Shuqian Dong ◽  
Bin Wang

Least-squares reverse time migration (LSRTM) overcomes the shortcomings of conventional migration algorithms by iteratively fitting the demigrated synthetic data and the input data to refine the initial depth image toward true reflectivity. It gradually enhances the effective signals and removes the migration artifacts such as swing noise during conventional migration. When imaging the subsalt area with complex structures, many practical issues have to be considered to ensure the convergence of the inversion. We tackle those practical issues such as an unknown source wavelet, inaccurate migration velocity, and slow convergence to make LSRTM applicable to subsalt imaging in geologic complex areas such as the Gulf of Mexico. Dynamic warping is used to realign the modeled and input data to compensate for minor velocity errors in the subsalt sediments. A windowed crosscorrelation-based confidence level is used to control the quality of the residual computation. The confidence level is further used as an inverse weighting to precondition the data residual so that the convergence rates in shallow and deep images are automatically balanced. It also helps suppress the strong artifacts related to the salt boundary. The efficiency of the LSRTM is improved so that interpretable images in the area of interest can be obtained in only a few iterations. After removing the artifacts near the salt body using LSRTM, the image better represents the true geology than the outcome of conventional RTM; thus, it facilitates the interpretation. Synthetic and field data examples examine and demonstrate the effectiveness of the adaptive strategies.


Geophysics ◽  
2014 ◽  
Vol 79 (3) ◽  
pp. S105-S111 ◽  
Author(s):  
Sheng Xu ◽  
Feng Chen ◽  
Bing Tang ◽  
Gilles Lambare

When using seismic data to image complex structures, the reverse time migration (RTM) algorithm generally provides the best results when the velocity model is accurate. With an inexact model, moveouts appear in common image gathers (CIGs), which are either in the surface offset domain or in subsurface angle domain; thus, the stacked image is not well focused. In extended image gathers, the strongest energy of a seismic event may occur at non-zero-lag in time-shift or offset-shift gathers. Based on the operation of RTM images produced by the time-shift imaging condition, the non-zero-lag time-shift images exhibit a spatial shift; we propose an approach to correct them by a second pass of migration similar to zero-offset depth migration; the proposed approach is based on the local poststack depth migration assumption. After the proposed second-pass migration, the time-shift CIGs appear to be flat and can be stacked. The stack enhances the energy of seismic events that are defocused at zero time lag due to the inaccuracy of the model, even though the new focused events stay at the previous positions, which might deviate from the true positions of seismic reflection. With the stack, our proposed approach is also able to attenuate the long-wavelength RTM artifacts. In the case of tilted transverse isotropic migration, we propose a scheme to defocus the coherent noise, such as migration artifacts from residual multiples, by applying the original migration velocity model along the symmetry axis but with different anisotropic parameters in the second pass of migration. We demonstrate that our approach is effective to attenuate the coherent noise at subsalt area with two synthetic data sets and one real data set from the Gulf of Mexico.


Geophysics ◽  
2011 ◽  
Vol 76 (1) ◽  
pp. S29-S39 ◽  
Author(s):  
Faqi Liu ◽  
Guanquan Zhang ◽  
Scott A. Morton ◽  
Jacques P. Leveille

Reverse-time migration (RTM) exhibits great superiority over other imaging algorithms in handling steeply dipping structures and complicated velocity models. However, low-frequency, high-amplitude noises commonly seen in a typical RTM image have been one of the major concerns because they can seriously contaminate the signals in the image if they are not handled properly. We propose a new imaging condition to effectively and efficiently eliminate these specific noises from the image. The method works by first decomposing the source and receiver wavefields to their one-way propagation components, followed by applying a correlation-based imaging condition to the appropriate combinations of the decomposed wavefields. We first give the physical explanation of the principle of such noises in the conventional RTM image. Then we provide the detailed mathematical theory for the new imaging condition. Finally, we propose an efficient scheme for its numerical implementation. It replaces the computationally intensive decomposition with the cost-effective Hilbert transform, which significantly improves the efficiency of the imaging condition. Applications to various synthetic and real data sets demonstrate that this new imaging condition can effectively remove the undesired low-frequency noises in the image.


Sign in / Sign up

Export Citation Format

Share Document