Noise removal by migration of time-shift images

Geophysics ◽  
2014 ◽  
Vol 79 (3) ◽  
pp. S105-S111 ◽  
Author(s):  
Sheng Xu ◽  
Feng Chen ◽  
Bing Tang ◽  
Gilles Lambare

When using seismic data to image complex structures, the reverse time migration (RTM) algorithm generally provides the best results when the velocity model is accurate. With an inexact model, moveouts appear in common image gathers (CIGs), which are either in the surface offset domain or in subsurface angle domain; thus, the stacked image is not well focused. In extended image gathers, the strongest energy of a seismic event may occur at non-zero-lag in time-shift or offset-shift gathers. Based on the operation of RTM images produced by the time-shift imaging condition, the non-zero-lag time-shift images exhibit a spatial shift; we propose an approach to correct them by a second pass of migration similar to zero-offset depth migration; the proposed approach is based on the local poststack depth migration assumption. After the proposed second-pass migration, the time-shift CIGs appear to be flat and can be stacked. The stack enhances the energy of seismic events that are defocused at zero time lag due to the inaccuracy of the model, even though the new focused events stay at the previous positions, which might deviate from the true positions of seismic reflection. With the stack, our proposed approach is also able to attenuate the long-wavelength RTM artifacts. In the case of tilted transverse isotropic migration, we propose a scheme to defocus the coherent noise, such as migration artifacts from residual multiples, by applying the original migration velocity model along the symmetry axis but with different anisotropic parameters in the second pass of migration. We demonstrate that our approach is effective to attenuate the coherent noise at subsalt area with two synthetic data sets and one real data set from the Gulf of Mexico.

Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB175-WB182 ◽  
Author(s):  
Yan Huang ◽  
Bing Bai ◽  
Haiyong Quan ◽  
Tony Huang ◽  
Sheng Xu ◽  
...  

The availability of wide-azimuth data and the use of reverse time migration (RTM) have dramatically increased the capabilities of imaging complex subsalt geology. With these improvements, the current obstacle for creating accurate subsalt images now lies in the velocity model. One of the challenges is to generate common image gathers that take full advantage of the additional information provided by wide-azimuth data and the additional accuracy provided by RTM for velocity model updating. A solution is to generate 3D angle domain common image gathers from RTM, which are indexed by subsurface reflection angle and subsurface azimuth angle. We apply these 3D angle gathers to subsalt tomography with the result that there were improvements in velocity updating with a wide-azimuth data set in the Gulf of Mexico.


Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB27-WB39 ◽  
Author(s):  
Zheng-Zheng Zhou ◽  
Michael Howard ◽  
Cheryl Mifflin

Various reverse time migration (RTM) angle gather generation techniques have been developed to address poor subsalt data quality and multiarrival induced problems in gathers from Kirchhoff migration. But these techniques introduce new problems, such as inaccuracies in 2D subsurface angle gathers and edge diffraction artifacts in 3D subsurface angle gathers. The unique rich-azimuth data set acquired over the Shenzi field in the Gulf of Mexico enabled the generally artifact-free generation of 3D subsurface angle gathers. Using this data set, we carried out suprasalt tomography and salt model building steps and then produced 3D angle gathers to update the subsalt velocity. We used tilted transverse isotropy RTM with extended image condition to generate full 3D subsurface offset domain common image gathers, which were subsequently converted to 3D angle gathers. The angle gathers were substacked along the subsurface azimuth axis into azimuth sectors. Residual moveout analysis was carried out, and ray-based tomography was used to update velocities. The updated velocity model resulted in improved imaging of the subsalt section. We also applied residual moveout and selective stacking to 3D angle gathers from the final migration to produce an optimized stack image.


Geophysics ◽  
2010 ◽  
Vol 75 (2) ◽  
pp. S81-S93 ◽  
Author(s):  
Mikhail M. Popov ◽  
Nikolay M. Semtchenok ◽  
Peter M. Popov ◽  
Arie R. Verdel

Seismic depth migration aims to produce an image of seismic reflection interfaces. Ray methods are suitable for subsurface target-oriented imaging and are less costly compared to two-way wave-equation-based migration, but break down in cases when a complex velocity structure gives rise to the appearance of caustics. Ray methods also have difficulties in correctly handling the different branches of the wavefront that result from wave propagation through a caustic. On the other hand, migration methods based on the two-way wave equation, referred to as reverse-time migration, are known to be capable of dealing with these problems. However, they are very expensive, especially in the 3D case. It can be prohibitive if many iterations are needed, such as for velocity-model building. Our method relies on the calculation of the Green functions for the classical wave equation by per-forming a summation of Gaussian beams for the direct and back-propagated wavefields. The subsurface image is obtained by cal-culating the coherence between the direct and backpropagated wavefields. To a large extent, our method combines the advantages of the high computational speed of ray-based migration with the high accuracy of reverse-time wave-equation migration because it can overcome problems with caustics, handle all arrivals, yield good images of steep flanks, and is readily extendible to target-oriented implementation. We have demonstrated the quality of our method with several state-of-the-art benchmark subsurface models, which have velocity variations up to a high degree of complexity. Our algorithm is especially suited for efficient imaging of selected subsurface subdomains, which is a large advantage particularly for 3D imaging and velocity-model refinement applications such as subsalt velocity-model improvement. Because our method is also capable of providing highly accurate migration results in structurally complex subsurface settings, we have also included the concept of true-amplitude imaging in our migration technique.


Geophysics ◽  
1998 ◽  
Vol 63 (2) ◽  
pp. 546-556 ◽  
Author(s):  
Herman Chang ◽  
John P. VanDyke ◽  
Marcelo Solano ◽  
George A. McMechan ◽  
Duryodhan Epili

Portable, production‐scale 3-D prestack Kirchhoff depth migration software capable of full‐volume imaging has been successfully implemented and applied to a six‐million trace (46.9 Gbyte) marine data set from a salt/subsalt play in the Gulf of Mexico. Velocity model building and updates use an image‐driven strategy and were performed in a Sun Sparc environment. Images obtained by 3-D prestack migration after three velocity iterations are substantially better focused and reveal drilling targets that were not visible in images obtained from conventional 3-D poststack time migration. Amplitudes are well preserved, so anomalies associated with known reservoirs conform to the petrophysical predictions. Prototype development was on an 8-node Intel iPSC860 computer; the production version was run on an 1824-node Intel Paragon computer. The code has been successfully ported to CRAY (T3D) and Unix workstation (PVM) environments.


Geophysics ◽  
2016 ◽  
Vol 81 (2) ◽  
pp. Q15-Q26 ◽  
Author(s):  
Giovanni Angelo Meles ◽  
Kees Wapenaar ◽  
Andrew Curtis

State-of-the-art methods to image the earth’s subsurface using active-source seismic reflection data involve reverse time migration. This and other standard seismic processing methods such as velocity analysis provide best results only when all waves in the data set are primaries (waves reflected only once). A variety of methods are therefore deployed as processing to predict and remove multiples (waves reflected several times); however, accurate removal of those predicted multiples from the recorded data using adaptive subtraction techniques proves challenging, even in cases in which they can be predicted with reasonable accuracy. We present a new, alternative strategy to construct a parallel data set consisting only of primaries, which is calculated directly from recorded data. This obviates the need for multiple prediction and removal methods. Primaries are constructed by using convolutional interferometry to combine the first-arriving events of upgoing and direct-wave downgoing Green’s functions to virtual receivers in the subsurface. The required upgoing wavefields to virtual receivers are constructed by Marchenko redatuming. Crucially, this is possible without detailed models of the earth’s subsurface reflectivity structure: Similar to the most migration techniques, the method only requires surface reflection data and estimates of direct (nonreflected) arrivals between the virtual subsurface sources and the acquisition surface. We evaluate the method on a stratified synclinal model. It is shown to be particularly robust against errors in the reference velocity model used and to improve the migrated images substantially.


Geophysics ◽  
2016 ◽  
Vol 81 (2) ◽  
pp. KS51-KS60 ◽  
Author(s):  
Nori Nakata ◽  
Gregory C. Beroza

Time reversal is a powerful tool used to image directly the location and mechanism of passive seismic sources. This technique assumes seismic velocities in the medium and propagates time-reversed observations of ground motion at each receiver location. Assuming an accurate velocity model and adequate array aperture, the waves will focus at the source location. Because we do not know the location and the origin time a priori, we need to scan the entire 4D image (3D in space and 1D in time) to localize the source, which makes time-reversal imaging computationally demanding. We have developed a new approach of time-reversal imaging that reduces the computational cost and the scanning dimensions from 4D to 3D (no time) and increases the spatial resolution of the source image. We first individually extrapolate wavefields at each receiver, and then we crosscorrelate these wavefields (the product in the frequency domain: geometric mean). This crosscorrelation creates another imaging condition, and focusing of the seismic wavefields occurs at the zero time lag of the correlation provided the velocity model is sufficiently accurate. Due to the analogy to the active-shot reverse time migration (RTM), we refer to this technique as the geometric-mean RTM or GmRTM. In addition to reducing the dimension from 4D to 3D compared with conventional time-reversal imaging, the crosscorrelation effectively suppresses the side lobes and yields a spatially high-resolution image of seismic sources. The GmRTM is robust for random and coherent noise because crosscorrelation enhances signal and suppresses noise. An added benefit is that, in contrast to conventional time-reversal imaging, GmRTM has the potential to be used to retrieve velocity information by analyzing time and/or space lags of crosscorrelation, which is similar to what is done in active-source imaging.


Geophysics ◽  
2017 ◽  
Vol 82 (4) ◽  
pp. S307-S314 ◽  
Author(s):  
Yibo Wang ◽  
Yikang Zheng ◽  
Qingfeng Xue ◽  
Xu Chang ◽  
Tong W. Fei ◽  
...  

In the implementation of migration of multiples, reverse time migration (RTM) is superior to other migration algorithms because it can handle steeply dipping structures and offer high-resolution images of the complex subsurface. However, the RTM results using two-way wave equation contain high-amplitude, low-frequency noise and false images generated by improper wave paths in migration velocity model with sharp velocity interfaces or strong velocity gradients. To improve the imaging quality in RTM of multiples, we separate the upgoing and downgoing waves in the propagation of source and receiver wavefields. A complex function involved with the Hilbert transform is used in wavefield decomposition. Our approach is cost effective and avoids the large storage of wavefield snapshots required by the conventional wavefield separation technique. We applied migration of multiples with wavefield decomposition on a simple two-layer model and the Sigsbee 2B synthetic data set. Our results demonstrate that the proposed approach can improve the image generated by migration of multiples significantly.


Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB79-WB86 ◽  
Author(s):  
Xuening Ma ◽  
Bin Wang ◽  
Cristina Reta-Tang ◽  
Wilfred Whiteside ◽  
Zhiming Li

We present a case study of enhanced imaging of wide-azimuth data from the Gulf of Mexico utilizing recent technologies; and we discuss the resulting improvements in image quality, especially in subsalt areas, relative to previous results. The input seismic data sets are taken from many large-scale wide-azimuth surveys and conventional narrow-azimuth surveys located in the Mississippi Canyon and Atwater Valley areas. In the course of developing the enhanced wide azimuth processing flow, the following three key steps are found to have the most impact on improving subsalt imaging: (1) 3D true azimuth surface-related multiple elimination (SRME) to remove multiple energy, in particular, complex multiples beneath salt; (2) reverse-time migration (RTM) based delayed imaging time (DIT) scans to update the complex subsalt velocity model; and (3) tilted transverse isotropic (TTI) RTM to improve image quality. Our research focuses on the depth imaging aspects of the project, with particular emphasis on the application of the DIT scanning technique. The DIT-scan technique further improves the accuracy of the subsalt velocity model after conventional ray-based subsalt tomography has been performed. We also demonstrate the uplift obtained by acquiring a wide-azimuth data set relative to a standard narrow-azimuth data set, and how orthogonal wide-azimuth is able to enhance the subsalt illumination.


Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE211-VE216 ◽  
Author(s):  
Jacobus Buur ◽  
Thomas Kühnel

Many production targets in greenfield exploration are found in salt provinces, which have highly complex structures as a result of salt formation over geologic time. Difficult geologic settings, steep dips, and other wave-propagation effects make reverse-time migration (RTM) the migration method of choice, rather than Kirchhoff migration or other (by definition approximate) one-way equation methods. Imaging of the subsurface using any depth-migration algorithm can be done successfully only when the quality of the prior velocity model is sufficient. The (velocity) model-building loop is an iterative procedure for improving the velocity model. This is done by obtaining certain measurements (residual moveout) on image gathers generated during the migration procedure; those measurements then are input into tomographic updating. Commonly RTM is applied around salt bodies, where building the velocity model fails essentially because tomography is ray-trace based. Our idea is to apply RTM directly inside the model-building loop but to do so without using the image gathers. Although the process is costly, we migrate the full frequency content of the data to create a high-quality stack. This enhances the interpretation of top and bottom salt significantly and enables us to include the resulting salt geometry in the velocity model properly. We demonstrate our idea on a 2D West Africa seismic line. After several model-building iterations, the result is a dramatically improved velocity model. With such a good model as input, the final RTM confirms the geometry of the salt bodies and basically the salt interpretation, and yields a compelling image of the subsurface.


Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. B105-B117 ◽  
Author(s):  
Julien Cotton ◽  
Hervé Chauris ◽  
Eric Forgues ◽  
Paul Hardouin

In 4D seismic, the velocity model used for imaging and reservoir characterization can change as production from the reservoir progresses. This is particularly true for heavy oil reservoirs stimulated by steam injection. In the context of sparse and low-fold seismic acquisitions, conventional migration velocity analyses can be inadequate because of a poorly and irregularly sampled offset dimension. We update the velocity model in the context of daily acquisitions with buried sources and receivers. The main objective is to demonstrate that subtle time-lapse effects can be detected over the calendar time on onshore sparse acquisitions. We develop a modified version of the conventional prestack time migration to detect velocity changes obtained after crosscorrelation of the base and monitor surveys. This technique is applied on a heavy oil real data set from the Netherlands and reveals how the steam diffuses over time within the reservoir.


Sign in / Sign up

Export Citation Format

Share Document