Cased borehole acoustic-wave propagation with varying bonding conditions: Theoretical and experimental modeling

Geophysics ◽  
2019 ◽  
Vol 84 (4) ◽  
pp. D161-D169
Author(s):  
Can Jiang ◽  
Xue-Lian Chen ◽  
Yuan-Da Su ◽  
Xiao-Ming Tang

Acoustic measurements in cased boreholes are important for cement-bond evaluation behind the casing. In conjunction with a recently developed acoustic-wave theory using slip-boundary modeling, we carried out an experimental study for different cement-bond conditions. Four different cased-hole models were constructed, where the interface between the casing and the cement, and that between the cement and the formation, are decoupled or partially bonded to simulate the different cement bond conditions. An acoustic system is placed in the borehole to measure extensional casing waves along the borehole. By extracting the attenuation and velocity of casing waves from the experimental data, the bonding conditions were analyzed and compared with the theoretical modeling. The results indicate that, compared with the free-pipe situation, the casing waves are attenuated when there is some degree of bonding (good or poor) between the casing and the formation. However, when the poor bonding occurs at the cement-formation interface, the casing wave indicates significant velocity reduction and dispersion, the degree of the velocity change varying with the bonding condition. This wave phenomenon is predicted by the slip-boundary modeling. By adjusting the slip-boundary parameters in the modeling, the experimental results can be quantitatively modeled. These results are also confirmed by cased-hole acoustic logging data examples. The theoretical model can therefore be used to interpret cased-borehole acoustic-wave measurements.

2018 ◽  
Vol 61 (8) ◽  
pp. 1057-1064 ◽  
Author(s):  
Xiaoming Tang ◽  
Can Jiang ◽  
Yuanda Su ◽  
Xuelian Chen

1997 ◽  
Author(s):  
E. Longatte ◽  
P. Lafon ◽  
S. Candel ◽  
E. Longatte ◽  
P. Lafon ◽  
...  

2021 ◽  
Vol 330 ◽  
pp. 114270
Author(s):  
A. Venkata Sekhar ◽  
A.V. Kityk ◽  
J. Jedryka ◽  
P. Rakus ◽  
A. Wojciechowski ◽  
...  

2021 ◽  
Vol 127 (5) ◽  
Author(s):  
A. Venkata Sekhar ◽  
A. Siva Sesha Reddy ◽  
A.V. Kityk ◽  
J. Jedryka ◽  
P. Rakus ◽  
...  

Author(s):  
Carlos Ortiz-Aleman ◽  
Ronald Martin ◽  
Jaime Urrutia-Fucugauchi ◽  
Mauricio Orozco del Castillo ◽  
Mauricio Nava-Flores

Sign in / Sign up

Export Citation Format

Share Document