Tensorial Elastodynamics for Anisotropic Media

Geophysics ◽  
2021 ◽  
pp. 1-60
Author(s):  
Tugrul Konuk ◽  
Jeffrey Shragge

Elastic wavefield solutions computed by finite-difference (FD) methods in complex anisotropic media are essential elements of elastic reverse-time migration and full waveform inversion analyses. Cartesian formulations of such solution methods, though, face practical challenges when aiming to represent curved interfaces (including free-surface topography) with rectilinear elements. To forestall such issues, we propose a general strategy for generating solutions of tensorial elastodynamics for anisotropic media (i.e., tilted transversely isotropic (TTI) or even lower symmetry) in non-Cartesian computational domains. For the specific problem of handling free-surface topography, we define an unstretched coordinate mapping that transforms an irregular physical domain to a regular computational grid on which FD solutions of the modified equations of elastodynamics are straightforward to calculate. Our fully staggered grid with a mimetic finite-difference (FSG+MFD) approach solves the velocity-stress formulation of the tensorial elastic wave equation where we compute the stress-strain constitutive relationship in Cartesian coordinates and then transform the resulting stress tensor to generalized coordinates to solve the equations of motion. The resulting FSG+MFD numerical method has a computational complexity comparable to Cartesian scenarios using a similar FSG+MFD numerical approach. Numerical examples demonstrate that the proposed solution can simulate anisotropic elastodynamic field solutions on irregular geometries and is thus a reliable tool for anisotropic elastic modeling, imaging and inversion applications in generalized computational domains including handling free-surface topography.

Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. T359-T373
Author(s):  
Jeffrey Shragge ◽  
Tugrul Konuk

Numerical solutions of 3D isotropic elastodynamics form the key computational kernel for many isotropic elastic reverse time migration and full-waveform inversion applications. However, real-life scenarios often require computing solutions for computational domains characterized by non-Cartesian geometry (e.g., free-surface topography). One solution strategy is to compute the elastodynamic response on vertically deformed meshes designed to incorporate irregular topology. Using a tensorial formulation, we have developed and validated a novel system of semianalytic equations governing 3D elastodynamics in a stress-velocity formulation for a family of vertically deformed meshes defined by Bézier interpolation functions between two (or more) nonintersecting surfaces. The analytic coordinate definition also leads to a corresponding analytic free-surface boundary condition (FSBC) as well as expressions for wavefield injection and extraction. Theoretical examples illustrate the utility of the tensorial approach in generating analytic equations of 3D elastodynamics and the corresponding FSBCs for scenarios involving free-surface topography. Numerical examples developed using a fully staggered grid with a mimetic finite-difference formulation demonstrate the ability to model the expected full-wavefield behavior, including complex free-surface interactions.


Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. C265-C278 ◽  
Author(s):  
Jeffrey Shragge

Simulating two-way acoustic wavefield propagation directly from a free-surface boundary in the presence of topography remains a computational challenge for applications of reverse time migration (RTM) or full-waveform inversion (FWI). For land-seismic settings involving heavily reworked geology (e.g., fold and thrust belts), two-way wavefield propagation operators should also handle commonly observed complex anisotropy including tilted transversely isotropic (TTI) media. To address these issues, I have extended a system of coupled partial differential equations used to model 3D acoustic TTI wave propagation in Cartesian coordinates to more generalized 3D geometries, including a deformed computational mesh with a domain boundary conformal to free-surface topography. A generalized curvilinear transformation is used to specify a system of equations governing 3D acoustic TTI wave propagation in the “topographic” coordinate system. The developed finite-difference time-domain numerical solution adapts existing Cartesian TTI operators to this more generalized geometry with little additional computational overhead. Numerical evaluations illustrate that 2D and 3D impulse responses are well-matched to those simulated on Cartesian meshes and analytic traveltimes for homogeneous elliptical TTI media. Accordingly, these generalized acoustic TTI propagators and their numerical adjoints are useful for undertaking most RTM or FWI applications using computational domains conforming to free-surface topography.


Geophysics ◽  
2017 ◽  
Vol 82 (5) ◽  
pp. T225-T235 ◽  
Author(s):  
Leandro Di Bartolo ◽  
Leandro Lopes ◽  
Luis Juracy Rangel Lemos

Pseudoacoustic algorithms are very fast in comparison with full elastic ones for vertical transversely isotropic (VTI) modeling, so they are suitable for many applications, especially reverse time migration. Finite differences using simple grids are commonly used to solve pseudoacoustic equations. We have developed and implemented general high-order 3D pseudoacoustic transversely isotropic formulations. The focus is the development of staggered-grid finite-difference algorithms, known for their superior numerical properties. The staggered-grid schemes based on first-order velocity-stress wave equations are developed in detail as well as schemes based on direct application to second-order stress equations. This last case uses the recently presented equivalent staggered-grid theory, resulting in a staggered-grid scheme that overcomes the problem of large memory requirement. Two examples are presented: a 3D simulation and a prestack reverse time migration application, and we perform a numerical analysis regarding computational cost and precision. The errors of the new schemes are smaller than the existing nonstaggered-grid schemes. In comparison with existing staggered-grid schemes, they require 25% less memory and only have slightly greater computational cost.


2018 ◽  
Vol 26 (02) ◽  
pp. 1850005 ◽  
Author(s):  
Jian Wang ◽  
Xiaohong Meng ◽  
Hong Liu ◽  
Wanqiu Zheng ◽  
Zhiwei Liu

Staggered-grid finite-difference forward modeling in the time domain has been widely used in reverse time migration and full waveform inversion because of its low memory cost and ease to implementation on GPU, however, high dominant frequency of wavelet and big grid interval could result in significant numerical dispersion. To suppress numerical dispersion, in this paper, we first derive a new weighted binomial window function (WBWF) for staggered-grid finite-difference, and two new parameters are included in this new window function. Then we analyze different characteristics of the main and side lobes of the amplitude response under different parameters and accuracy of the numerical solution between the WBWF method and some other optimum methods which denotes our new method can drive a better finite difference operator. Finally, we perform elastic wave numerical forward modeling which denotes that our method is more efficient than other optimum methods without extra computing costs.


Sign in / Sign up

Export Citation Format

Share Document