Q least-squares reverse time migration based on the first-order viscoacoustic quasidifferential equations

Geophysics ◽  
2021 ◽  
pp. 1-65
Author(s):  
Yingming Qu ◽  
Yixin Wang ◽  
Zhenchun Li ◽  
Chang Liu

Seismic wave attenuation caused by subsurface viscoelasticity reduces the quality of migration and the reliability of interpretation. A variety of Q-compensated migration methods have been developed based on the second-order viscoacoustic quasidifferential equations. However, these second-order wave-equation-based methods are difficult to handle with density perturbation and surface topography. In addition, the staggered grid scheme, which has an advantage over the collocated grid scheme because of its reduced numerical dispersion and enhanced stability, works in first-order wave-equation-based methods. We have developed a Q least-squares reverse time migration method based on the first-order viscoacoustic quasidifferential equations by deriving Q-compensated forward-propagated operators, Q-compensated adjoint operators, and Q-attenuated Born modeling operators. Besides, our method using curvilinear grids is available even when the attenuating medium has surface topography and can conduct Q-compensated migration with density perturbation. The results of numerical tests on two synthetic and a field data sets indicate that our method improves the imaging quality with iterations and produces better imaging results with clearer structures, higher signal-to-noise ratio, higher resolution, and more balanced amplitude by correcting the energy loss and phase distortion caused by Q attenuation. It also suppresses the scattering and diffracted noise caused by the surface topography.

Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. S199-S216
Author(s):  
Xinru Mu ◽  
Jianping Huang ◽  
Jidong Yang ◽  
Xu Guo ◽  
Yundong Guo

Anisotropy is a common phenomenon in subsurface strata and should be considered in seismic imaging and inversion. Seismic imaging in a vertical transversely isotropic (VTI) medium does not take into account the effects of the tilt angles, which can lead to degraded migrated images in areas with strong anisotropy. To correct such waveform distortion, reduce related image artifacts, and improve migration resolution, a tilted transversely isotropic (TTI) least-squares reverse time migration (LSRTM) method is presented. In the LSRTM, a pure qP-wave equation is used and solved with the finite-difference method. We have analyzed the stability condition for the pure qP-wave equation using the matrix method, which is used to ensure the stability of wave propagation in the TTI medium. Based on this wave equation, we derive a corresponding demigration (Born modeling) and adjoint migration operators to implement TTI LSRTM. Numerical tests on the synthetic data show the advantages of TTI LSRTM over VTI RTM and VTI LSRTM when the recorded data contain strong effects caused by large tilt angles. Our numerical experiments illustrate that the sensitivity of the adopted TTI LSRTM to the migration velocity errors is much higher than that to the anisotropic parameters (including epsilon, delta, and tilted angle parameters), and its sensitivity to the epsilon model and tilt angle is higher than that to the delta model.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaobo Zhang ◽  
Xiutian Wang ◽  
Baohua Liu ◽  
Peng Song ◽  
Jun Tan ◽  
...  

Reverse time migration (RTM) is an ideal seismic imaging method for complex structures. However, in conventional RTM based on rectangular mesh discretization, the medium interfaces are usually distorted. Besides, reflected waves generated by the two-way wave equation can cause artifacts during imaging. To overcome these problems, a high-order finite-difference (FD) scheme and stability condition for the pseudo-space-domain first-order velocity-stress acoustic wave equation were derived, and based on the staggered-grid FD scheme, the RTM of the pseudo-space-domain acoustic wave equation was implemented. Model experiments showed that the proposed RTM of the pseudo-space-domain acoustic wave equation could systematically avoid the interface distortion problem when the velocity interfaces were considered to compute the pseudo-space-domain intervals. Moreover, this method could effectively suppress the false scattering of dipping interfaces and reflections during wavefield extrapolation, thereby reducing migration artifacts on the profile and significantly improving the quality of migration imaging.


Geophysics ◽  
2021 ◽  
pp. 1-48
Author(s):  
Mikhail Davydenko ◽  
Eric Verschuur

Waveform inversion based on Least-Squares Reverse Time Migration (LSRTM) usually involves Born modelling, which models the primary-only data. As a result the inversion process handles only primaries and corresponding multiple elimination pre-processing of the input data is required prior to imaging and inversion. Otherwise, multiples left in the input data are mapped as false reflectors, also known as crosstalk, in the final image. At the same time the developed Full Wavefield Migration (FWM) methodology can handle internal multiples in an inversion-based imaging process. However, because it is based on the framework of the one-way wave equation, it cannot image dips close to and beyond 90 degrees. Therefore, we aim at upgrading LSRTM framework by bringing functionality of FWM to handle internal multiples. We have discovered that the secondary source term, used in the original formulation of FWM to define a wavefield relationship that allows to model multiple scattering via reflectivity, can be injected into a pressure component when simulating the two-way wave equation using finite-difference modelling. We use this modified forward model for estimating the reflectivity model with automatic crosstalk supression and validate the method on both synthetic and field data containing visible internal multiples.


Geophysics ◽  
2018 ◽  
Vol 83 (1) ◽  
pp. S1-S13 ◽  
Author(s):  
Linan Xu ◽  
Mauricio D. Sacchi

We have investigated the problem of designing the forward operator and its exact adjoint for two-way wave-equation least-squares migration. We study the problem in the time domain and pay particular attention to the individual operators that are required by the algorithm. We derive our algorithm using the language of linear algebra and establish a simple path to design forward and adjoint operators that pass the dot-product test. We also found that the exact adjoint operator is not equal to the classic reverse time migration algorithm. For instance, one must pay particular attention to boundary conditions to compute the exact adjoint that accurately passes the dot-product test. Forward and adjoint operators are adopted to solve the so-called least-squares reverse time migration problem via the method of conjugate gradients. We also examine a preconditioning strategy to invert extended images.


Sign in / Sign up

Export Citation Format

Share Document