Approximations to a generalized real ray-tracing method for heterogeneous anisotropic viscoelastic media

Geophysics ◽  
2021 ◽  
pp. 1-108
Author(s):  
Jianlu Wu ◽  
Bing Zhou ◽  
youcef bouzidi ◽  
Xingwang Li

The real raytracing approach leads to an effective solution in the real space domain using a homogenous ray velocity vector. However, it fails to yield solutions for quasi-shear waves, which suffer triplication of the wavefronts. To address this challenging problem, a generalized real ray-tracing method and its new approximations are presented to solve the complex ray equation. The numerical results show that the generalized ray-tracing method is superior to the real ray-tracing method in the presence of triplications of the quasi-shear waves in the computation of ray velocity, ray attenuation, and ray quality factors, as well as the reflection and transmission coefficients in viscoelastic anisotropic media. Based on the assumptions of the real slowness direction and real polarization vectors, two new approximations of the generalized real ray-tracing method are developed for directly computing the homogeneous complex ray velocity vectors of three wave modes (qP, qS1, and qS2). These approximations significantly improve the computational efficiency by avoiding the iterative process required by the generalized real ray-tracing method that is inherited from the real ray-tracing method. The computational accuracies are verified through transversely isotropic models and orthorhombic models with different strengths of attenuation and anisotropy. The incorporation of the new approximation into the shortest-path method turned out to be an efficient and accurate method for seismic ray tracing in heterogeneous viscoelastic and transversely isotropic media with a vertical axis of symmetry, even in the presence of strong attenuation and anisotropy.

2000 ◽  
Vol 54 (3) ◽  
pp. 46-56
Author(s):  
K. Uchida ◽  
D. Da ◽  
C. K. Lee ◽  
T. Matsunaga ◽  
T. Imai ◽  
...  

Energy ◽  
2021 ◽  
Vol 228 ◽  
pp. 120438
Author(s):  
Asher J. Hancock ◽  
Laura B. Fulton ◽  
Justin Ying ◽  
Corey E. Clifford ◽  
Shervin Sammak ◽  
...  

Geophysics ◽  
2021 ◽  
pp. 1-53
Author(s):  
Jiangtao Hu ◽  
Jianliang Qian ◽  
Jian Song ◽  
Min Ouyang ◽  
Junxing Cao ◽  
...  

Seismic waves in earth media usually undergo attenuation, causing energy losses and phase distortions. In the regime of high-frequency asymptotics, a complex-valued eikonal is an essential ingredient for describing wave propagation in attenuating media, where the real and imaginary parts of the eikonal function capture dispersion effects and amplitude attenuation of seismic waves, respectively. Conventionally, such a complex-valued eikonal is mainly computed either by tracing rays exactly in complex space or by tracing rays approximately in real space so that the resulting eikonal is distributed irregularly in real space. However, seismic data processing methods, such as prestack depth migration and tomography, usually require uniformly distributed complex-valued eikonals. Therefore, we propose a unified framework to Eulerianize several popular approximate real-space ray-tracing methods for complex-valued eikonals so that the real and imaginary parts of the eikonal function satisfy the classical real-space eikonal equation and a novel real-space advection equation, respectively, and we dub the resulting method the Eulerian partial-differential-equation method. We further develop highly efficient high-order methods to solve these two equations by using the factorization idea and the Lax-Friedrichs weighted essentially non-oscillatory (WENO) schemes. Numerical examples demonstrate that the proposed method yields highly accurate complex-valued eikonals, analogous to those from ray-tracing methods. The proposed methods can be useful for migration and tomography in attenuating media.


Sign in / Sign up

Export Citation Format

Share Document