Resolution enhancement in the generalized S-transform domain based on variational-mode decomposition of seismic data

2017 ◽  
Author(s):  
Jiangfeng Jia* ◽  
Xuehua Chen ◽  
Shuaishuai Jiang ◽  
Wei Jiang ◽  
Jie Zhang
Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. V307-V317 ◽  
Author(s):  
Hao Wu ◽  
Bo Zhang ◽  
Tengfei Lin ◽  
Fangyu Li ◽  
Naihao Liu

Seismic noise attenuation is an important step in seismic data processing. Most noise attenuation algorithms are based on the analysis of time-frequency characteristics of the seismic data and noise. We have aimed to attenuate white noise of seismic data using the convolutional neural network (CNN). Traditional CNN-based noise attenuation algorithms need prior information (the “clean” seismic data or the noise contained in the seismic) in the training process. However, it is difficult to obtain such prior information in practice. We assume that the white noise contained in the seismic data can be simulated by a sufficient number of user-generated white noise realizations. We then attenuate the seismic white noise using the modified denoising CNN (MDnCNN). The MDnCNN does not need prior clean seismic data nor pure noise in the training procedure. To accurately and efficiently learn the features of seismic data and band-limited noise at different frequency bandwidths, we first decomposed the seismic data into several intrinsic mode functions (IMFs) using variational mode decomposition and then apply our denoising process to the IMFs. We use synthetic and field data examples to illustrate the robustness and superiority of our method over the traditional methods. The experiments demonstrate that our method can not only attenuate most of the white noise but it also rejects the migration artifacts.


2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Bin Liu ◽  
Youqian Feng ◽  
Zhonghai Yin ◽  
Xiangyu Fan

Present radar signal emitter recognition approaches suffer from a dependency on prior information. Moreover, modern emitter recognition must meet the challenges associated with low probability of intercept technology and other obscuration methodologies based on complex signal modulation and must simultaneously provide a relatively strong ability for extracting weak signals under low SNR values. Therefore, the present article proposes an emitter recognition approach that combines ensemble empirical mode decomposition (EEMD) with the generalized S-transform (GST) for promoting enhanced recognition ability for radar signals with complex modulation under low signal-to-noise ratios in the absence of prior information. The results of Monte Carlo simulations conducted using various mixed signals with additive Gaussian white noise are reported. The results verify that EEMD suppresses the occurrence of mode mixing commonly observed using standard empirical mode decomposition. In addition, EEMD is shown to extract meaningful signal features even under low SNR values, which demonstrates its ability to suppress noise. Finally, EEMD-GST is demonstrated to provide an obviously better time-frequency focusing property than that of either the standard S-transform or the short-time Fourier transform.


Author(s):  
Shulin Zheng ◽  
Zijun Shen

Complex geological characteristics and deepening of the mining depth are the difficulties of oil and gas exploration at this stage, so high-resolution processing of seismic data is needed to obtain more effective information. Starting from the time-frequency analysis method, we propose a time-frequency domain dynamic deconvolution based on the Synchrosqueezing generalized S transform (SSGST). Combined with spectrum simulation to estimate the wavelet amplitude spectrum, the dynamic convolution model is used to eliminate the influence of dynamic wavelet on seismic records, and the seismic signal with higher time-frequency resolution can be obtained. Through the verification of synthetic signals and actual signals, it is concluded that the time-frequency domain dynamic deconvolution based on the SSGST algorithm has a good effect in improving the resolution and vertical resolution of the thin layer of seismic data.


2009 ◽  
Vol 6 (2) ◽  
pp. 153-157 ◽  
Author(s):  
Jianhua Tian ◽  
Wei Song ◽  
Feizhou Yang

Sign in / Sign up

Export Citation Format

Share Document