component extraction
Recently Published Documents


TOTAL DOCUMENTS

215
(FIVE YEARS 31)

H-INDEX

19
(FIVE YEARS 2)

Food Industry ◽  
2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Galina Meshcheryakova ◽  
Albert Nugmanov ◽  
Igor Aleksanian ◽  
Lyubov Titova ◽  
Olga Zolotovskaya

2021 ◽  
Author(s):  
Ruzica Cvetanovic ◽  
Zarko Janda

This paper proposes a new method for very fast extraction of symmetrical components.


2021 ◽  
Author(s):  
Ruzica Cvetanovic ◽  
Zarko Janda

This paper proposes a new method for very fast extraction of symmetrical components.


Author(s):  
Наталия Владимировна Самойленко

В работе рассмотрено применение алгоритма адаптивного извлечения главных компонент (APEX) для понижения размерности массива данных. Данный алгоритм является нейросетевым алгоритмом обучения без учителя и использует как прямые, так и обратные связи. Проведено исследование эффективности алгоритма APEX для сокращения размерности сигнала, полученного при поверхностном ЭКГ-картировании. The paper considers the use of the adaptive principal component extraction (APEX) algorithm to reduce the dimension of the data array. This algorithm is a neural network algorithm for unsupervised learning and uses both forward and backward connections. The study of the efficiency of the APEX algorithm for reducing the dimensionality of the signal obtained by surface ECG mapping was carried out.


2021 ◽  
Vol 21 (66) ◽  
Author(s):  
José Alejandro Lara Rivera ◽  
Julio Cabero Almenara

Se presenta una investigación empírica que evalúa los saberes digitales en profesores de educación superior, los datos fueron recopilados en una institución mexicana ubicada en el noroeste del país.  La muestra es probabilística aleatoria simple compuesta por 224 profesores clasificados desde las variables Edad, Grado académico y Género, ya que, se trabajó con el hipotético de que los conocimientos tecnológicos están relacionados con estos factores. Con la finalidad de buscar relación estadística en el agrupamiento de los datos, se realizó un factorial exploratorio por Kaiser-Meyer-Olkin (KMO) y prueba de esfericidad de Bartlett con el método de extracción de componentes principales y rotación varimax. Se aceptaron solo los factores con un autovalor superior a 1 y un peso factorial por ítem superior al 0.40. Posteriormente se realizaron pruebas estadísticas no paramétricas para identificar relaciones desde las variables de cruce.  Los hallazgos dan cuenta de que la Edad de los profesores es un factor diferenciador para la apropiación de saberes digitales. An empirical research is presented that assesses digital knowledge in higher education teachers, the data was collected in a Mexican institution located in the northwest of the country. The sample is simple random probabilistic composed of 224 teachers classified according to the variables Age, Academic Degree and Gender, since the hypothetical was worked on that technological knowledge is related to these factors. In order to find a statistical relationship in the grouping of data, an exploratory factorial was performed by Kaiser-Meyer-Olkin (KMO) and Bartlett's sphericity test with the principal component extraction method and varimax rotation. Only factors with an eigenvalue greater than 1 and a factorial weight per item greater than 0.40 were accepted. Subsequently, non-parametric statistical tests were performed to identify relationships from the crossover variables. The findings show that the age of the teachers is a differentiating factor for the appropriation of digital knowledge.


Author(s):  
Divyabharathi M ◽  
Jeevarathinam S ◽  
Kowshalya A ◽  
Mr. K. Dinesh Kumar

Numerous methods are executed to perform unique mark acknowledgment approach, and every procedure dependent on explicit standards. The point of this work is to locate an effective finger impression acknowledgment procedure. This venture attempts to offer a straightforward superior way to deal with perform finger impression acknowledgment. This methodology dependent on two fundamental stages; the first is the genuine information assortment of human unique mark tests and the subsequent stage is focused on plan and usage of elite finger impression acknowledgment approach. The executed methodology focused on the component extraction part in which numerous degrees of two dimensional discrete cosine change (2D-DCT) are utilized to create superior element. This methodology is executed by means of blending the highlights of both right finger thumb and left finger thumb. The outcomes demonstrate that a decent precision of acknowledgment is gotten by this methodology.


Sign in / Sign up

Export Citation Format

Share Document