Interpretation of fractured zones using seismic attributes — Case study from Teapot Dome, Wyoming, USA

2016 ◽  
Vol 4 (2) ◽  
pp. T249-T260 ◽  
Author(s):  
Sarah Schneider ◽  
Christoph Georg Eichkitz ◽  
Marcellus Gregor Schreilechner ◽  
John C. Davis

We have used poststack seismic attributes to describe the fracture network of the naturally fractured Tensleep Formation at Teapot Dome, Wyoming, USA. The attributes include coherence, coherence based on spectral decomposed seismic data, attributes based on curvature, and textural attributes based on the gray-level co-occurrence matrix (GLCM). Results were compared with image log interpretations of four wells. Seismic attribute analysis allowed determination of strikes and dips as well as the intensity of fractures. The GLCM-based attributes proved especially valuable for building a discrete fracture network.

2021 ◽  
pp. 99-108
Author(s):  
Sergiy VYZHVA ◽  
Ihor SOLOVYOV ◽  
Ihor МYKHALEVYCH ◽  
Viktoriia KRUHLYK ◽  
Georgiy LISNY

Based on the results of numerous seismic studies carried out in the areas and fields of the Dnipro-Donets depression, the strategy to identify hydrocarbon traps in this region has been developed taking into account modern requirements for prospecting and exploration of gas and oil fields. The studies are designed to determine the favorable zones of hydrocarbon accumulations based on the analysis of the structural-tectonic model. A necessary element for solving such a problem is to aaply direct indicators of hydrocarbons to predict traps of the structural, lithological or combined type. It was determined that an effective approach to identify hydrocarbon traps in the region is attribute analysis employing seismic attributes such as seismic envelope, acoustic impedance or relative acoustic impedance. In most cases of practical importance, the analysis of the distribution of the values of these attributes turned out to be sufficient for performing the geological tasks. It is given an example of extracting additional useful information on the spatial distribution of hydrocarbon traps from volumetric images obtained from seismograms of common sources with a limited range of ray angles inclinations. To analyze the distributions of seismic attribute values, it is recommended to use the Geobody technology for detecting geological bodies as the most effective when using volumetric seismic data. The distributions of various properties of rocks, including zones of increased porosity or zones of presence of hydrocarbons are determined depending on the types of seismic attributes used in the analysis,. The use of several seismic attributes makes it possible to identify geological bodies saturated with hydrocarbons with increased porosity and the like. The paper provides examples of hydrocarbon traps recognition in the areas and fields of the Dnipro-Donets depression practically proved by wells. A generalization on the distribution of promising hydrocarbon areas on the Northern flank of the Dnipro-Donets depression and the relationship of this distribution with the identified structural elements of the geological subsoil is made. 


First Break ◽  
2020 ◽  
Vol 38 (7) ◽  
pp. 49-55
Author(s):  
Muhammad Zahid Afzal Durrani ◽  
Maryam Talib ◽  
Vita Kalashnikova ◽  
Musharaf Sajjad ◽  
Rune Øverås ◽  
...  

2007 ◽  
Author(s):  
Robert Marten ◽  
Walter Rietveld ◽  
Mark Benson ◽  
Alaa Khodeir ◽  
James Keggin ◽  
...  

2015 ◽  
Vol 3 (3) ◽  
pp. SZ41-SZ48 ◽  
Author(s):  
Payam Kavousi Ghahfarokhi ◽  
Thomas H. Wilson

The Tensleep oil reservoir at Teapot Dome, Wyoming, USA, is a naturally fractured tight sandstone reservoir that has been considered for carbon dioxide enhanced oil recovery ([Formula: see text]-EOR) and sequestration. Interpretation of open fractures identified in wireline image logs from the field suggests that the reservoir fracture network is dominated by early formed structural hinge-oblique fractures with interconnectivity enhanced by hinge-parallel and hinge-perpendicular fracture sets. Previous studies show that 3D seismic scale discontinuity attributes are dominated by more recent hinge-parallel and strike slip trends. The most negative curvature attribute that we used highlights concave features attributed to subtle traveltime delay through fracture zones and small faults or flexures associated with the fracture swarms. The poststack discontinuity extraction workflow incorporated seismic spectral blueing (SSB) to enhance the resolution of the seismic data. The SSB process is followed by computation of the short-wavelength most negative curvature. Subsequently, the minimum similarity attribute is applied to accentuate regions with minimum similarity of curvature. An edge-illumination process is then applied to the minimum similarity of the most negative curvature output. Discontinuities extracted through edge illumination locate regions of minimal similarity in curvature along fracture zones or small fault boundaries. This workflow enhances hinge-oblique discontinuities without azimuthal filtering and provides a fracture intensity attribute, which is used as an input to distribute the fracture intensity through the model discrete fracture network. Qualitative correlation of production data to extracted discontinuities suggests that wells located on hinge-oblique discontinuities are more productive than other wells in the field.


2019 ◽  
Author(s):  
Maurizio Ercoli ◽  
Emanuele Forte ◽  
Massimiliano Porreca ◽  
Ramon Carbonell ◽  
Cristina Pauselli ◽  
...  

Abstract. In seismotectonic studies, seismic reflection data are a powerful tool to unravel the complex deep architecture of active faults. Such tectonic structures are usually mapped at surface through traditional geological surveying whilst seismic reflection data may help to trace their continuation from the near-surface down to hypocentral depth. In this study, we propose the application of the seismic attributes technique, commonly used in seismic reflection exploration by oil industry, to seismotectonic research for the first time. The study area is a geologically complex region of Central Italy, recently struck by a long-lasting seismic sequence including a Mw 6.5 main-shock. A seismic reflection data-set consisting of three vintage seismic profiles, currently the only available across the epicentral zone, constitutes a singular opportunity to attempt a seismic attribute analysis. This analysis resulted in peculiar seismic signatures which generally correlate with the exposed surface geologic features, and also confirming the presence of other debated structures. These results are critical, because provide information also on the relatively deep structural setting, mapping a prominent, high amplitude regional reflector that marks the top basement, interpreted as important rheological boundary. Complex patterns of high-angle discontinuities crossing the reflectors have been also identified. These dipping fabrics are interpreted as the expression of fault zones, belonging to the active normal fault systems responsible for the seismicity of the region. This work demonstrates that seismic attribute analysis, even if used on low-quality vintage 2D data, may contribute to improve the subsurface geological interpretation of areas characterized by high seismic potential.


2020 ◽  
Author(s):  
Muhammad Bilal Malik ◽  
Matloob Hussain ◽  
Armghan Faisal Meraj ◽  
Sher Afgan ◽  
Pal Washa Shahzad Rathore

Sign in / Sign up

Export Citation Format

Share Document