Constraining self-organizing map facies analysis with stratigraphy: An approach to increase the credibility in automatic seismic facies classification

2017 ◽  
Vol 5 (2) ◽  
pp. T163-T171 ◽  
Author(s):  
Tao Zhao ◽  
Fangyu Li ◽  
Kurt J. Marfurt

Pattern recognition-based seismic facies analysis techniques are commonly used in modern quantitative seismic interpretation. However, interpreters often treat techniques such as artificial neural networks and self-organizing maps (SOMs) as a “black box” that somehow correlates a suite of attributes to a desired geomorphological or geomechanical facies. Even when the statistical correlations are good, the inability to explain such correlations through principles of geology or physics results in suspicion of the results. The most common multiattribute facies analysis begins by correlating a suite of candidate attributes to a desired output, keeping those that correlate best for subsequent analysis. The analysis then takes place in attribute space rather than ([Formula: see text], [Formula: see text], and [Formula: see text]) space, removing spatial trends often observed by interpreters. We add a stratigraphy layering component to a SOM model that attempts to preserve the intersample relation along the vertical axis. Specifically, we use a mode decomposition algorithm to capture the sedimentary cycle pattern as an “attribute.” If we correlate this attribute to the training data, it will favor SOM facies maps that follow stratigraphy. We apply this workflow to a Barnett Shale data set and find that the constrained SOM facies map shows layers that are easily overlooked on traditional unconstrained SOM facies map.

Author(s):  
Robert Tatoian ◽  
Lutz Hamel

Self-organizing maps are artificial neural networks designed for unsupervised machine learning. Here in this article, the authors introduce a new quality measure called the convergence index. The convergence index is a linear combination of map embedding accuracy and estimated topographic accuracy and since it reports a single statistically meaningful number it is perhaps more intuitive to use than other quality measures. The convergence index in the context of clustering problems was proposed by Ultsch as part of his fundamental clustering problem suite as well as real world datasets. First demonstrated is that the convergence index captures the notion that a SOM has learned the multivariate distribution of a training data set by looking at the convergence of the marginals. The convergence index is then used to study the convergence of SOMs with respect to the different parameters that govern self-organizing map learning. One result is that the constant neighborhood function produces better self-organizing map models than the popular Gaussian neighborhood function.


Author(s):  
Nazar Elfadil ◽  

Self-organizing maps are unsupervised neural network models that lend themselves to the cluster analysis of high-dimensional input data. Interpreting a trained map is difficult because features responsible for specific cluster assignment are not evident from resulting map representation. This paper presents an approach to automated knowledge acquisition using Kohonen's self-organizing maps and k-means clustering. To demonstrate the architecture and validation, a data set representing animal world has been used as the training data set. The verification of the produced knowledge base is done by using conventional expert system.


Geophysics ◽  
2012 ◽  
Vol 77 (4) ◽  
pp. O45-O53 ◽  
Author(s):  
Puneet Saraswat ◽  
Mrinal K. Sen

Seismic facies, combined with well-log data and other seismic attributes such as coherency, curvature, and AVO, play an important role in subsurface geological studies, especially for identification of depositional structures. The effectiveness of any seismic facies analysis algorithm depends on whether or not it is driven by local geologic factors, the absence of which may lead to unrealistic information about subsurface geology, depositional environment, and lithology. This includes proper identification of number of classes or facies existing in the data set. We developed a hybrid waveform classification algorithm based on an artificial immune system and self-organizing maps (AI-SOM), that forms the class of unsupervised classification or automatic facies identification followed by facies map generation. The advantage of AI-SOM is that, unlike, a stand-alone SOM, it is more robust in the presence of noise in seismic data. Artificial immune system (AIS) is an excellent data reduction technique providing a compact representation of the training data; this is followed by clustering and identification of number of clusters in the data set. The reduced data set from AIS processing serves as an excellent input to SOM processing. Thus, facies maps generated from AI-SOM are less affected by noise and redundancy in the data set. We tested the effectiveness of our algorithm with application to an offshore 3D seismic volume from F3 block in the Netherlands. The results confirmed that we can better interpret an appropriate number of facies in the seismic data using the AI-SOM approach than with a conventional SOM. We also examined the powerful data-reduction capabilities of AIS and advantages the of AI-SOM over SOM when data under consideration were noisy and redundant.


2008 ◽  
Vol 12 (2) ◽  
pp. 657-667 ◽  
Author(s):  
M. Herbst ◽  
M. C. Casper

Abstract. The reduction of information contained in model time series through the use of aggregating statistical performance measures is very high compared to the amount of information that one would like to draw from it for model identification and calibration purposes. It has been readily shown that this loss imposes important limitations on model identification and -diagnostics and thus constitutes an element of the overall model uncertainty. In this contribution we present an approach using a Self-Organizing Map (SOM) to circumvent the identifiability problem induced by the low discriminatory power of aggregating performance measures. Instead, a Self-Organizing Map is used to differentiate the spectrum of model realizations, obtained from Monte-Carlo simulations with a distributed conceptual watershed model, based on the recognition of different patterns in time series. Further, the SOM is used instead of a classical optimization algorithm to identify those model realizations among the Monte-Carlo simulation results that most closely approximate the pattern of the measured discharge time series. The results are analyzed and compared with the manually calibrated model as well as with the results of the Shuffled Complex Evolution algorithm (SCE-UA). In our study the latter slightly outperformed the SOM results. The SOM method, however, yields a set of equivalent model parameterizations and therefore also allows for confining the parameter space to a region that closely represents a measured data set. This particular feature renders the SOM potentially useful for future model identification applications.


Geophysics ◽  
2007 ◽  
Vol 72 (1) ◽  
pp. P9-P21 ◽  
Author(s):  
Marcílio Castro de Matos ◽  
Paulo Léo Osorio ◽  
Paulo Roberto Johann

Unsupervised seismic facies analysis provides an effective way to estimate reservoir properties by combining different seismic attributes through pattern recognition algorithms. However, without consistent geological information, parameters such as the number of facies and even the input seismic attributes are usually chosen in an empirical way. In this context, we propose two new semiautomatic alternative methods. In the first one, we use the clustering of the Kohonen self-organizing maps (SOMs) as a new way to build seismic facies maps and to estimate the number of seismic facies. In the second method, we use wavelet transforms to identify seismic trace singularities in each geologically oriented segment, and then we build the seismic facies map using the clustering of the SOM. We tested both methods using synthetic and real seismic data from the Namorado deepwater giant oilfield in Campos Basin, offshore Brazil. The results confirm that we can estimate the appropriate number of seismic facies through the clustering of the SOM. We also showed that we can improve the seismic facies analysis by using trace singularities detected by the wavelet transform technique. This workflow presents the advantage of being less sensitive to horizon interpretation errors, thus resulting in an improved seismic facies analysis.


2013 ◽  
Vol 316-317 ◽  
pp. 415-418
Author(s):  
Chun Lin Yang ◽  
Rui Ping Guo ◽  
Qing Ling Yue

An approach for establishment of soil environmental assessment model to evaluate the environmental quality level for soil environmental quality is proposed, in which the GIS and self-organizing map (SOM) techniques are integrated through investigation of soil environmental quality. In this model, self-organizing maps (SOM) and spatial interpolation were applied to cluster a concentration data set of pollutants of soil environmental quality and mapping anomaly region. An application of heavy metal concentrations in soils were surveyed to indicate the status of heavy metal contents and assess environmental quality of soils basing on spatial extraction model. The concentration of 9 metals (Cu, Pb, Zn, Cd, Ni, Cr, Hg, As and Mn) in topsoil were investigated based on samples. The samples were clustered into 3 classes by SOM. According to the concentration level of the samples, the different environmental quality levels were discriminated. The results indicate that SOM as the spatial extraction model was effective to assess the soil environmental quality.


Sign in / Sign up

Export Citation Format

Share Document