scholarly journals Integrated geophysical analysis provides an alternate interpretation of the northern margin of the North American Midcontinent Rift System, Central Lake Superior

2020 ◽  
Vol 8 (4) ◽  
pp. SS63-SS85
Author(s):  
V. J. S. Grauch ◽  
Eric D. Anderson ◽  
Samuel J. Heller ◽  
Esther K. Stewart ◽  
Laurel G. Woodruff

The Midcontinent Rift System (MRS) is a 1.1 Ga sequence of voluminous basaltic eruptions and multiple intrusions followed by widespread sedimentation that extends across the Midcontinent and northern Great Lakes region of North America. Previous workers have commonly used seismic-reflection data (Great Lakes International Multidisciplinary Program on Crustal Evolution [GLIMPCE] line A) to demonstrate that the northern rift margin in central Lake Superior developed as a normal growth fault that was structurally inverted to a reverse fault during a compressional event after rifting had ended. A prominent, curvilinear aeromagnetic anomaly that extends from Isle Royale, Michigan, to Superior Shoal in central Lake Superior, Ontario (the IR-SS anomaly), is commonly presented as a manifestation of this reverse fault. We have integrated multidisciplinary geophysical analyses (seismic-reflection, seismic-refraction, aeromagnetic, and gravity), physical-property information (density, magnetic susceptibility and remanence, and compressional-wave velocity), and geologic concepts to develop an alternate interpretation of the rift margin along GLIMPCE line A, where it intersects the IR-SS anomaly. Our new model indicates that a normal fault is the dominant structure at the northern rift margin along line A, contrary to the original rift-margin paradigm, which asserts that compressional structures are the dominant features preserved today. Integral to this alternate model is a newly interpreted, prerift sedimentary basin intruded by sills in northern Lake Superior. Our alternate model of the northern rift margin has implications for interpreting the style, scale, and timing of extension, rift-related intrusion, and compression during development of the MRS.

1994 ◽  
Vol 31 (4) ◽  
pp. 652-660 ◽  
Author(s):  
John L. Sexton ◽  
Harvey Henson Jr.

The interpretation of 1047 km of seismic reflection data collected in western Lake Superior is presented along with reflection traveltime contour maps and gravity models to understand the overall geometry of the Midcontinent Rift System beneath the lake. The Douglas, Isle Royale, and Keweenaw fault zones, clearly imaged on the seismic profiles, are interpreted to be large offset detachment faults associated with initial rifting. These faults have been reactivated as reverse faults with 3–5 km of throw. The Douglas Fault Zone is not directly connected with the Isle Royale Fault Zone. The seismic data has imaged two large basins filled with more than 22 km of middle Keweenawan pre-Portage Lake and Portage Lake volcanic rocks and up to 8 km of upper Keweenawan Oronto and Bayfield sedimentary rocks. These basins persisted throughout Keweenawan time and are separated by a ridge of Archean rocks and a narrow trough bounded by the Keweenaw Fault Zone to the south. Another fault zone, herein named the Ojibwa fault zone, previously interpreted as the northeastern extension of the Douglas Fault Zone, has been reinterpreted as a reverse fault that closely follows the ridge of Archean rocks. Previous researchers have stated that neighboring segments of the rift display alternating polarity of basins associated with large detachment faults. Accommodation zones have been previously interpreted to exist between rift segments; however, the seismic data do not image a clearly identifiable accommodation zone separating the two basins in western Lake Superior. Thus, the seismic profile may lie directly above the pivot of a scissors-type accommodation fault zone, there is no vertical offset associated with the zone, or the zone does not exist. Seismic data interpretations indicate that application of a simple alternating polarity basin – accommodation zone model is an oversimplification of the complex geological structures associated with the Midcontinent Rift System.


1994 ◽  
Vol 31 (4) ◽  
pp. 709-720 ◽  
Author(s):  
Donald C. Adams ◽  
G. Randy Keller

The Midcontinent Rift System forms one of the most prominent gravity features in North America. The recognized geophysical anomaly extends in an arc from southern Oklahoma to Lake Superior and then into southern Michigan. The Midcontinent Rift System was active between 1185–1010 Ma, as indicated in the Lake Superior region by age determinations on intrusive igneous rocks. We suggest that the period of formation of the Midcontinent Rift was also a time of extensive igneous activity in Texas and New Mexico. This activity is represented by intrusions beneath the Central basin platform (Texas and New Mexico), intrusions which crop out at the Pajarito Mountain in the Sacramento Mountains (New Mexico), a basaltic debris flow in the Franklin Mountains (Texas), basalt flows at Van Horn (Texas), and the Crosbyton geophysical anomaly (east of Lubbock, Texas). These bodies and other bodies located by geophysical anomalies and wells drilled into mafic Precambrian rocks may be related to the Midcontinent Rift System. Alternatively this magmatism could be related to Grenville age tectonics in Texas. The mafic igneous rocks in this area form a 530 km diameter Middle Proterozoic igneous province, which formed between 1070 and 1220 Ma. Comparison of the Midcontinent Rift System and its extensions proposed here with the Mesozoic and Cenozoic African rift systems indicates that these features are of comparable scale and complexity.


1997 ◽  
Vol 34 (4) ◽  
pp. 476-488 ◽  
Author(s):  
D. W. Davis ◽  
J. C. Green

Volcanism in the Midcontinent rift system lasted between 1108 and 1086 Ma. Rates of flood-basalt eruption and subsidence in the western Lake Superior region appear to have been greatest at the beginning of recorded activity (estimated 5 km/Ma subsidence rate at 1108 Ma) and rapidly waned over a period of 1–3 Ma during a magnetically reversed period. The age of the paleomagnetic polarity reversal is now constrained to be between 1105 ± 2 and 1102 ± 2 Ma. A resurgence of intense volcanism began at 1100 ± 2 Ma in the North Shore Volcanic Group and lasted until 1097 ± 2 Ma. This group contains a ca. 7 Ma time gap between magnetically reversed and normal volcanic sequences. A similar disconformity appears to exist in the upper part of the Powder Mill Group. The average subsidence rate during this period was approximately 3.7 km/Ma. Latitude variations measured from paleomagnetism on dated sequences indicate that the North American plate was drifting at a minimum rate of 22 cm/year during the early history of the Midcontinent rift. An abrupt slowdown to approximately 8 cm/year occurred at ca. 1095 Ma. These data support a mantle-plume origin for Midcontinent rift volcanism, with the plume head attached to and drifting with the continental lithosphere. Resurgence of flood-basalt magmatism at 1100 Ma may have been caused by extension of the superheated lithosphere following continental collision within the Grenville Orogen to the east.


Sign in / Sign up

Export Citation Format

Share Document