Gravimetric study in the northeast portion of Paraná Sedimentary Basin – Southeast Brazil. A preliminary Bouguer anomaly map

2005 ◽  
Author(s):  
Walter Malagutti Filho ◽  
Maximilian Fries ◽  
João Carlos Dourado ◽  
Mariana Aparecida Fernandes
2021 ◽  
Vol 225 (2) ◽  
pp. 984-997
Author(s):  
Álvaro Osorio Riffo ◽  
Guillaume Mauri ◽  
Adriano Mazzini ◽  
Stephen A Miller

SUMMARY Lusi is a sediment-hosted hydrothermal system located near Sidoarjo in Central Java, Indonesia, and has erupted continuously since May 2006. This mud eruption extends over a surface of ∼7 km2, and is framed by high containment dams. The present study investigates the geometry of the subsurface structures using a detailed gravimetric model to visualize in 3-D the Lusi system and surrounding lithologies. The obtained residual Bouguer anomaly map, simulated through geostatistical interpolation methods, supports the results of previous deformation studies. The negative gravity anomaly zones identified at Lusi are interpreted as fractured areas through which fluids can ascend towards the surface. A 3-D detailed geological model of the area was constructed with Geomodeller™ to highlight the main features. This model relies on the structures’ density contrasts, the interpreted residual Bouguer anomaly map, and geological data from previous authors. 3-D algorithms were used to calculate the gravity response of the model and validate it by inverse methods. The final output is a gravity constrained 3-D geological model of the Lusi mud edifice. These results provide essential details on the Lusi subsurface and may be useful for possible future geothermal resource exploitation and for the risk mitigation plans related to the maintenance of the man-made framing embankment.


2017 ◽  
Vol 47 (1) ◽  
pp. 3-19
Author(s):  
João Gabriel Motta ◽  
Norberto Morales ◽  
Walter Malagutti Filho

ABSTRACT: The Brasília and Ribeira fold belts have been established in south-southwestern São Francisco Craton during the Brasiliano-Pan African orogeny (0.9-0.5 Ga - Tonian to Cambrian), and played an important role in West Gondwana continent assembly. The region is given by a complex regional fold and thrust belt superposed by shearing during the orogeny late times, with superposing stress fields forming a structural interference zone. These thrust sheets encompasses assemblies from lower- to upper-crust from different major tectonic blocks (Paranapanema, São Francisco), and newly created metamorphic rocks. Re-evaluation of ground gravity datasets in a geologically constrained approach including seismology (CRUST1 model) and magnetic data (EMAG2 model) unveiled details on the deep- crust settings, and the overall geometry of the structural interference zone. The Simple Bouguer Anomaly map shows heterogeneous density distribution in the area, highlighting the presence of high-density, high metamorphic grade rocks along the Alterosa suture zone in the Socorro-Guaxupé Nappe, lying amid a series of metasedimentary thrust scales in a regional nappe system with important verticalization along regional shear zones. Forward gravity modeling favors interpretations of structural interference up North into Guaxupé Nappe. Comparison to geotectonic models shows similarities with modern accretionary belts, renewing the discussion.


2018 ◽  
Vol 7 (1) ◽  
pp. 94
Author(s):  
Anatole Eugene Djieto Lordon ◽  
Mbohlieu YOSSA ◽  
Christopher M Agyingi ◽  
Yves Shandini ◽  
Thierry Stephane Kuisseu

Gravimetric studies using the ETOPO1-corrected high resolution satellite-based EGM2008 gravity data was used to define the surface extent, depth to basement and shape of the Mamfe basin. The Bouguer anomaly map was produced in Surfer 11.0. The Fast Fourier Transformed data was analyzed by spectral analysis to remove the effect of the regional bodies in the study area. The residual anomaly map obtained was compared with the known geology of the study area, and this showed that the gravity highs correspond to the metamorphic and igneous rocks while the gravity lows match with Cretaceous sediments. Three profiles were drawn on the residual anomaly map along which 2D models of the Mamfe basin were drawn. The modeling was completed in Grav2dc v2.06 software which uses the Talwini’s algorithm and the resulting models gave the depth to basement and the shape of the basement along the profiles. After processing and interpretation, it was deduced that the Mamfe basin has an average length and width of 77.6 km and 29.2 km respectively, an average depth to basement of 5 km and an overall U-shape basement. These dimensions (especially the depth) theoretically create the depth and temperature conditions for petroleum generation. 


2021 ◽  
Vol 13 (22) ◽  
pp. 4510
Author(s):  
Klemen Medved ◽  
Oleg Odalović ◽  
Božo Koler

The existing Bouguer anomaly map, which covers the territory of the Republic of Slovenia is a few decades old. Since then, quite a few new gravimetric measurements (data) for the territory of Slovenia as well as high quality digital terrain models that are needed for creating such a map have been made available. The methodology and standards for creating gravity anomaly maps are also changing. Thus, the national Bouguer anomaly map was updated. There were some gross errors detected in the set of old gravimetric data. Additionally, the influence of new updated gravimetric data was analyzed. The comparison of the various maps and the analysis of the influence of input gravimetric data indicates that the new gravimetric data of Slovenia has a significant influence on the creation of the gravimetric anomaly maps for Slovenia (even over 30 mGals at some points).


2021 ◽  
Author(s):  
sara sayyadi ◽  
Magnús T. Gudmundsson ◽  
Thórdís Högnadóttir ◽  
James White ◽  
Joaquín M.C. Belart ◽  
...  

<p>The formation of the oceanic island Surtsey in the shallow ocean off the south coast of Iceland in 1963-1967 remains one of the best-studied examples of basaltic emergent volcanism to date. The island was built by both explosive, phreatomagmatic phases and by effusive activity forming lava shields covering parts of the explosively formed tuff cones.  Constraints on the subsurface structure of Surtsey achieved mainly based on the documented evolution during eruption and from drill cores in 1979 and in the ICDP-supported SUSTAIN drilling expedition in 2017(an inclined hole, directed 35° from the vertical). The 2017 drilling confirmed the existence of a diatreme, cut into the sedimentary pre-eruption seafloor (Jackson et al., 2019). </p><p>We use 3D-gravity modeling, constrained by the stratigraphy from the drillholes to study the structure of the island and the underlying diatreme.  Detailed gravity data were obtained on Surtsey in July 2014 with a gravity station spacing of ~100 m. Density measurements for the seafloor sedimentary and tephra samples of the surface were carried out using the ASTM1 protocol. By comparing the results with specific gravity measurements of cores from drillhole in 2017, a density contrast of about 200 kg m<sup>-3</sup> was found between the lapilli tuffs of the diatreme and the seafloor sediments.  Our approach is to divide the island into four main units of distinct density: (1) tuffs above sea level, (2) tuffs below sea level, (3) lavas above sea level, and (4) a lava delta below sea level, composed of breccias over which the lava advanced during the effusive eruption.  The boundaries between the bodies are defined from the eruption history and mapping done during the eruption, aided by the drill cores. </p><p>A complete Bouguer anomaly map is obtained by calculating a total terrain correction by applying the Nagy formula to dense DEMs (5 m spacing out to 1.2 km from station, 200 m spacing between 1.2 km and 50 km) of both island topography and ocean bathymetry.  Through the application of both forward and inverse modeling, using the GM-SYS 3D software, the results provide a 3-D model of the island itself, as well as constraints on diatreme shape and depth.</p>


Sign in / Sign up

Export Citation Format

Share Document