gravimetric data
Recently Published Documents


TOTAL DOCUMENTS

159
(FIVE YEARS 58)

H-INDEX

14
(FIVE YEARS 2)

Author(s):  
E. Utemov ◽  
◽  
D. Nurgaliev ◽  

The technique of processing gravimetric data is offered in this study. Offered technique based on wavelet transform with so-called «native» wavelet basis functions. Distinctive feature of the technique is a close relationship with both direct and inverse problems of gravimetry. It was shown that the peculiarity allows to quite simply and quickly location of causative sources even under of strong interference of gravity fields. Keywords: gravimetry; wavelet transform; anomaly; inverse problem.


2021 ◽  
Vol 44 (4) ◽  
pp. 369-381
Author(s):  
E. K. Turutanov ◽  
V. S. Kanaykin

The purpose of the study is construction of a model of the upper crust structure of the ore region in Mongolia and the three-dimensional mapping of intrusive bodies with which copper-porphyry mineralization is associated. An areal gravity survey was carried out with an observation density of 1 point per 6 km2 with the measurement accuracy of ±0.8 mGal. As a result, it was found that copper-molybdenum ore occurrences of the area including the Erdenet ore district are confined to local gravitational minima, which are interpreted as thickening of the body of the Selenga granitoids. The latter are confined to local depressions of this body base. The spatial proximity of supply channels of small ore-bearing intrusions and large granitoid bodies of the Selenga complex has been established. Porphyry ore intrusions are confined to rather wide (about 10 km) zones located above the depressions of the base of all intrusions of the Selenga complex (both granitoid and diorite). Since the local base depressions of the granitoid intrusions correspond to the position of magma supply channels, ore-bearing small intrusions were introduced approximately in the same places where the supply channels of granitoid intrusions of the Selenga complex existed. Therefore, it can be assumed that this case is characterized by not only tectonic inheritance (confined to the same faults and their intersection points), but also by a genetic one, since residual melts of the same foci, in which intrusion magma of the Selenga complex was generated might be the sources of small intrusions. From this point of view, the expediency of distinguishing an independent Erdenet complex seems to be controversial. Geophysical data on the spatial proximity of specified intrusion supply channels permit only to raise the question of such expediency. The solution to this issue is possible on the basis of a comprehensive analysis of petrological and geochemical data.


2021 ◽  
Vol 13 (22) ◽  
pp. 4510
Author(s):  
Klemen Medved ◽  
Oleg Odalović ◽  
Božo Koler

The existing Bouguer anomaly map, which covers the territory of the Republic of Slovenia is a few decades old. Since then, quite a few new gravimetric measurements (data) for the territory of Slovenia as well as high quality digital terrain models that are needed for creating such a map have been made available. The methodology and standards for creating gravity anomaly maps are also changing. Thus, the national Bouguer anomaly map was updated. There were some gross errors detected in the set of old gravimetric data. Additionally, the influence of new updated gravimetric data was analyzed. The comparison of the various maps and the analysis of the influence of input gravimetric data indicates that the new gravimetric data of Slovenia has a significant influence on the creation of the gravimetric anomaly maps for Slovenia (even over 30 mGals at some points).


2021 ◽  
Vol 43 (4) ◽  
pp. 76-90
Author(s):  
R.Z. Burtiev ◽  
Yu.V. Semenova ◽  
V.T. Kiriyak ◽  
E.V. Sidorenko ◽  
S.V. Troyan ◽  
...  

In this work, a time series model is used to study the structure of gravimetric data series to identify patterns in the change in the levels of the series and build its model in order to predict and study the relationships between the levels of gravimetric data. Observations of the activity of geophysical processes showed that the periods of variations in geophysical processes are scattered chaotically on the time axis. According to their schedule, it is impossible to definitely speak about the regularity in the duration of the periods of variations, and in the alternation of periods of seismic calm with a period of high seismic activity. The impetus for this study was the desire to analyze the structure of a number of formal methods to search for statistical patterns in the variations of geophysical parameters over time. Time series models were used to study the dynamics of geophysical events. Forecasting was carried out using the SPSS 20 package and EXCEL 2016. The accuracy of the forecast is indicated by the comparison of the forecast series with the actual data. The predicted values of the gravimetric data are within the confidence intervals. If you start forecasting too early, the forecast may differ from the forecast based on all statistical data. If the data shows seasonal trends, it is recommended to start forecasting from the date before the last point of the statistical data. Spatial and time series models can be used to study the dynamics of geophysical events. A spatial model describes a set of geophysical parameters at a given point in time. A time series is a series of regular observations of a certain parameter at successive points in time or at intervals of time. In this work, the time series model is used: to identify the statistical relationship between the frequency and depth of occurrence of earthquakes, as well as to identify the statistical dependence of these data on gravimetric variations; determination of patterns in the change in the levels of the series and the construction of its model in order to predict and study the relationships between geophysical phenomena.


Author(s):  
Marcos E. Bahía ◽  
L. Mariana Longo ◽  
Claudia L. Ravazzoli ◽  
Nicolás Scivetti ◽  
Leonardo Benedini ◽  
...  

Author(s):  
I. M. Khasanov ◽  
◽  
L. A. Muravyev ◽  

The global databases of gravity anomalies, currently available to researchers, provide a new informative tool for constructing density models of the deep structure of the earth's crust for individual regions. Currently, there are six models of gravitational anomalies, presented as a series of spherical harmonics up to 2190 degrees, which corresponds to about 10 km on the earth's surface. Different methods of processing terrestrial, marine, aerial, and satellite gravimetric data, available to their authors, determine the differences between these models, both on a global scale and within specific regions. We have performed a comparison of the EGM2008, GECO, EIGEN-6C4, and WGM2012 models with the Gravimag database on the Magadan Oblast territory. The comparison showed that free air anomalies for the EGM2008, GECO, EIGEN-6C4, and WGM2012 models in the selected area almost coincide. Bouguer anomalies of the WGM2012 model can be used in regional density modeling for adjacent regions where there are no conventional ground gravity data; however, within Magadan Oblast the Gravimag database has the best data quality.


2021 ◽  
Vol 43 (3) ◽  
pp. 27-46
Author(s):  
V. V. Stogny ◽  
G. A. Stogny

Profile 3-DV (Skovorodino-Tommot) crosses in the sublatitudinal direction the Stanovoy and Aldan megablocks of the Aldan-Stanovoy shield. As the basic elements of the Earth’s crust section along the profile 3-DV, a technique was adopted for identifying regional inhomogeneities of the lithosphere based on the results of the analysis of seismic and gravimetric data with subsequent typification of their nature. According to the SRM-CMP data, in the upper part of the section (up to 35 km) of the Aldan megablock, the Yakokut and Chulman heterogeneities are distinguished, and the Stanovoy megablock — the Kalara-Dzhugdzhur heterogeneity. The Yakokut and Chulman seismic inhomogeneities in the gravitational field correspond to minima with an the amplitude of up to 25 mGal. The gravitational field of the Kalara-Dzhugdzhur heterogeneity is mosaic and reflects its block structure. It is shown that the deep structure of the Aldan megablock in the area of the 3-DV profile is determined by the Yakokut granite-gneiss dome and Chulman sublateral decompaction zone, and the upper part (0—25 km) of the Stanovoy megablock is represented by the Kalar-Dzhugdzhur structure, composed of the Stanovoy complex of rocks  and blocks of highpressure granulites. A significant (up to 10 km) increase in the thickness of the earth’s crust of the Aldan megablock is explained by the presence of the upper layer juvenile crust formed in the Paleoproterozoic as a result of regional metamorphism of igneous rocks. The Earth’s crust of the Stanovoy megablock is tectonically rebuilt for almost the entire thickness of up to 40 km during the Mesozoic collision of the Precambrian North Asian and Sino-Korean cratons. The Yakokut granite-gneiss dome, in accordance with the proposed model of the structure of the Earth’s crust of the Aldan megablock, is the ore-controlling structure of the Central Aldan gold-bearing region, and highpressure granulites of the Zverevsky block of the Kalara-Dzhugdzhur heterogeneity of the Stanovoy megablock served as a source of gold in the Chako-Berkakit ore cluster.


2021 ◽  
Vol 64 (2) ◽  
Author(s):  
Jefferson Tavares Cruz Oliveira ◽  
José Antonio Barbosa ◽  
David de Castro ◽  
Paulo Correia ◽  
José Ricardo Magalhães ◽  
...  

An investigation of Curie point depths (CPD) based on spectral analysis of airborne magnetic data was carried out in the NE Brazilian continental margin. The studied region represents a narrow hyper-extended margin with three sedimentary basins. Regional geothermal gradient and heat flow were also calculated. CPD results were integrated with interpretation of 2D deep seismic data and with estimated isostatic Moho depths. The results reveal that the narrow hyper-extended crust is 150 km wide in the southern sector and 80 km wide in the north, with a narrow ocean-continental transition (OCT) zone that varies from 50 km wide in the south sector to 30 to 20 km wide in the north. The CPD isotherm showed the strong influence of the three main continental blocks of Borborema ́s Shield in the tectonic evolution of the three marginal basins. The CPD analysis corroborated models provided by gravimetric data and successfully demonstrated the sharp control of basement compartments on the thermal properties of the marginal basins domains


Sign in / Sign up

Export Citation Format

Share Document