A finite-difference modeling analysis of mode-converted scattering from massive sulfide deposits, Bathurst mining camp, Canada

2012 ◽  
Author(s):  
Gilles Bellefleur ◽  
Alireza Malehmir ◽  
Christof Müller
Geophysics ◽  
2012 ◽  
Vol 77 (5) ◽  
pp. WC69-WC79 ◽  
Author(s):  
Mahdieh Dehghannejad ◽  
Alireza Malehmir ◽  
Christopher Juhlin ◽  
Pietari Skyttä

The Kristineberg mining area in the western part of the Skellefte ore district is the largest base metal producer in northern Sweden and currently the subject of extensive geophysical and geologic studies aimed at constructing 3D geologic models. Seismic reflection data form the backbone of the geologic modeling in the study area. A geologic cross section close to the Kristineberg mine was used to generate synthetic seismic data using acoustic and elastic finite-difference algorithms to provide further insight about the nature of reflections and processing challenges when attempting to image the steeply dipping structures within the study area. Synthetic data suggest processing artifacts manifested themselves in the final 2D images as steeply dipping events that could be confused with reflections. Fewer artifacts are observed when the data are processed using prestack time migration. Prestack time migration also was performed on high-resolution seismic data recently collected near the Kristineberg mine and helped to image a high-amplitude, gently dipping reflection occurring stratigraphically above the extension of the deepest Kristineberg deposit. Swath 3D processing was applied to two crossing seismic lines, west of the Kristineberg mine, to provide information on the 3D geometry of an apparently flat-lying reflection observed in both of the profiles. The processing indicated that the reflection dips about 30° to the southwest and is generated at the contact between metasedimentary and metavolcanic rocks, the upper part of the latter unit being the most typical stratigraphic level for the massive sulfide deposits in the Skellefte district.


Minerals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 125 ◽  
Author(s):  
Azam Soltani Dehnavi ◽  
Christopher McFarlane ◽  
David Lentz ◽  
Sean McClenaghan ◽  
James Walker

The compositions of phyllosilicates, with a focus on fluid-mobile elements, were evaluated as a means to fingerprint the Middle Ordovician metamorphosed (greenschist facies) volcanogenic massive sulfide deposits of the Bathurst Mining Camp (BMC), Canada. Ninety-five drill-core samples from six of the major deposits of the Bathurst Mining Camp (Brunswick No. 12, Heath Steele B zone, Halfmile Lake Deep zone, Key Anacon East zone, Louvicourt, and Restigouche) were analyzed using electron microprobe and laser ablation inductively coupled plasma-mass spectrometry. Typically, phyllosilicates (chlorite, white mica, and to a lesser extent biotite) are ubiquitous phases in the host rocks of the massive sulfide deposits of the BMC. Electron microprobe analysis results show a wide compositional variation in chlorite and white mica. Laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) analysis was performed to measure fluid-mobile elements, showing that Tl is distinctly enriched in all white mica (up to 719 ppm) relative to chlorite (up to 50.1 ppm). Chlorite hosts Sn (up to 4600 ppm), Hg (up to 7.3 ppm), Sb (up to 35.4 ppm), As (up to 1320 ppm), In (up to 307 ppm), Cd (up to 83.2 ppm), and Se (up to 606 ppm). White mica hosts Sn (up to 1316 ppm), Hg (up to 93 ppm), Sb (up to 1630 ppm), As (up to 14,800 ppm), In (up to 1186 ppm), Cd (up to 98 ppm), and Se (up to 38.8 ppm). Limited LA-ICP-MS analysis on biotite indicates a higher overall concentration of Tl (mean = 14.6 ppm) relative to co-existing white mica (mean = 2.18 ppm). On average, biotite is also more enriched in Hg, Sn, and Ba relative to chlorite and white mica. Laser Ablation ICP-MS profiles of chlorite, white mica, and biotite demonstrate smooth time-dependent variations diagnostic of structural substitution of these elements. Compositional variation of chlorite-white mica pairs presented in the current study shows systematic variations as a function of distance from the mineralized horizons. This highlights the potential to use trace-element signatures in these phyllosilicate pairs to identify proximal (chlorite) and distal (white mica) footprints for volcanogenic massive sulfides exploration.


Sign in / Sign up

Export Citation Format

Share Document