Three-Dimensional Elastic Wave Modeling in Heterogeneous Transversely Isotropic Media on Massively Parallel Computers in the Laplace-Fourier Domain

2012 ◽  
Author(s):  
Petr Petrov ◽  
Gregory Newman
2018 ◽  
Vol 32 (3) ◽  
pp. 775-802 ◽  
Author(s):  
Francesco Marmo ◽  
Salvatore Sessa ◽  
Nicoló Vaiana ◽  
Daniela De Gregorio ◽  
Luciano Rosati

2019 ◽  
Vol 24 (12) ◽  
pp. 3806-3822
Author(s):  
A Amiri-Hezaveh ◽  
P Karimi ◽  
M Ostoja-Starzewski

A stress-based approach to the analysis of linear electro-magneto-elastic materials is proposed. Firstly, field equations for linear electro-magneto-elastic solids are given in detail. Next, as a counterpart of coupled governing equations in terms of the displacement field, generalized stress equations of motion for the analysis of three-dimensional (3D) problems Are obtained – they supply a more convenient basis when mechanical boundary conditions are entirely tractions. Then, a sufficient set of conditions for the corresponding solution of generalized stress equations of motion to be unique are detailed in a uniqueness theorem. A numerical passage to obtain the solution of such equations is then given by generalizing a reciprocity theorem in terms of stress for such materials. Finally, as particular cases of the general 3D form, the stress equations of motion for planar problems (plane strain and Generalized plane stress) for transversely isotropic media are formulated.


2012 ◽  
Vol 433-440 ◽  
pp. 4656-4661
Author(s):  
Qiang Zhang ◽  
Qi Zhen Du ◽  
Xu Fei Gong

We present a staggered-grid finite difference scheme for velocity-stress equations to simulate the elastic wave propagating in transversely isotropic media. Instead of the widely used temporally second-order difference scheme, a temporally fourth-order scheme is obtained in this paper. We approximate the third-order spatial derivatives with 2N-order difference rather than second-order or other fixed order difference as before. Thus, it could be possible to make a balanced accuracy of O (Δt4+Δx2N) with arbitrary N. Related issues such as stability criterion, numerical dispersion, source loading and boundary condition are also discussed in this paper. The numerical modeling result indicates that the scheme is reliable.


Radio Science ◽  
1996 ◽  
Vol 31 (1) ◽  
pp. 1-23 ◽  
Author(s):  
David L. Alumbaugh ◽  
Gregory A. Newman ◽  
Lydie Prevost ◽  
John N. Shadid

Sign in / Sign up

Export Citation Format

Share Document