Near-surface seismic imaging with P- and SH- Wave Full Waveform Inversion

Author(s):  
Iftekhar Alam* ◽  
Priyank Jaiswal
Author(s):  
James Smith ◽  
Dmitry Borisov ◽  
Ryan Modrak ◽  
Jeroen Tromp ◽  
Harley Cudney ◽  
...  

Geophysics ◽  
2021 ◽  
pp. 1-37
Author(s):  
Xinhai Hu ◽  
Wei Guoqi ◽  
Jianyong Song ◽  
Zhifang Yang ◽  
Minghui Lu ◽  
...  

Coupling factors of sources and receivers vary dramatically due to the strong heterogeneity of near surface, which are as important as the model parameters for the inversion success. We propose a full waveform inversion (FWI) scheme that corrects for variable coupling factors while updating the model parameter. A linear inversion is embedded into the scheme to estimate the source and receiver factors and compute the amplitude weights according to the acquisition geometry. After the weights are introduced in the objective function, the inversion falls into the category of separable nonlinear least-squares problems. Hence, we could use the variable projection technique widely used in source estimation problem to invert the model parameter without the knowledge of source and receiver factors. The efficacy of the inversion scheme is demonstrated with two synthetic examples and one real data test.


Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. B95-B105 ◽  
Author(s):  
Yao Wang ◽  
Richard D. Miller ◽  
Shelby L. Peterie ◽  
Steven D. Sloan ◽  
Mark L. Moran ◽  
...  

We have applied time domain 2D full-waveform inversion (FWI) to detect a known 10 m deep wood-framed tunnel at Yuma Proving Ground, Arizona. The acquired seismic data consist of a series of 2D survey lines that are perpendicular to the long axis of the tunnel. With the use of an initial model estimated from surface wave methods, a void-detection-oriented FWI workflow was applied. A straightforward [Formula: see text] quotient masking method was used to reduce the inversion artifacts and improve confidence in identifying anomalies that possess a high [Formula: see text] ratio. Using near-surface FWI, [Formula: see text] and [Formula: see text] velocity profiles were obtained with void anomalies that are easily interpreted. The inverted velocity profiles depict the tunnel as a low-velocity anomaly at the correct location and depth. A comparison of the observed and simulated waveforms demonstrates the reliability of inverted models. Because the known tunnel has a uniform shape and for our purposes an infinite length, we apply 1D interpolation to the inverted [Formula: see text] profiles to generate a pseudo 3D (2.5D) volume. Based on this research, we conclude the following: (1) FWI is effective in near-surface tunnel detection when high resolution is necessary. (2) Surface-wave methods can provide accurate initial S-wave velocity [Formula: see text] models for near-surface 2D FWI.


2017 ◽  
Author(s):  
Yao Wang ◽  
Richard Miller ◽  
Shelby Peterie ◽  
Steven Sloan ◽  
Mark Moran ◽  
...  

Geophysics ◽  
2018 ◽  
Vol 83 (1) ◽  
pp. R1-R11 ◽  
Author(s):  
Dmitry Borisov ◽  
Ryan Modrak ◽  
Fuchun Gao ◽  
Jeroen Tromp

Full-waveform inversion (FWI) is a powerful method for estimating the earth’s material properties. We demonstrate that surface-wave-driven FWI is well-suited to recovering near-surface structures and effective at providing S-wave speed starting models for use in conventional body-wave FWI. Using a synthetic example based on the SEG Advanced Modeling phase II foothills model, we started with an envelope-based objective function to invert for shallow large-scale heterogeneities. Then we used a waveform-difference objective function to obtain a higher-resolution model. To accurately model surface waves in the presence of complex tomography, we used a spectral-element wave-propagation solver. Envelope misfit functions are found to be effective at minimizing cycle-skipping issues in surface-wave inversions, and surface waves themselves are found to be useful for constraining complex near-surface features.


2021 ◽  
Vol 40 (5) ◽  
pp. 324-334
Author(s):  
Rongxin Huang ◽  
Zhigang Zhang ◽  
Zedong Wu ◽  
Zhiyuan Wei ◽  
Jiawei Mei ◽  
...  

Seismic imaging using full-wavefield data that includes primary reflections, transmitted waves, and their multiples has been the holy grail for generations of geophysicists. To be able to use the full-wavefield data effectively requires a forward-modeling process to generate full-wavefield data, an inversion scheme to minimize the difference between modeled and recorded data, and, more importantly, an accurate velocity model to correctly propagate and collapse energy of different wave modes. All of these elements have been embedded in the framework of full-waveform inversion (FWI) since it was proposed three decades ago. However, for a long time, the application of FWI did not find its way into the domain of full-wavefield imaging, mostly owing to the lack of data sets with good constraints to ensure the convergence of inversion, the required compute power to handle large data sets and extend the inversion frequency to the bandwidth needed for imaging, and, most significantly, stable FWI algorithms that could work with different data types in different geologic settings. Recently, with the advancement of high-performance computing and progress in FWI algorithms at tackling issues such as cycle skipping and amplitude mismatch, FWI has found success using different data types in a variety of geologic settings, providing some of the most accurate velocity models for generating significantly improved migration images. Here, we take a step further to modify the FWI workflow to output the subsurface image or reflectivity directly, potentially eliminating the need to go through the time-consuming conventional seismic imaging process that involves preprocessing, velocity model building, and migration. Compared with a conventional migration image, the reflectivity image directly output from FWI often provides additional structural information with better illumination and higher signal-to-noise ratio naturally as a result of many iterations of least-squares fitting of the full-wavefield data.


Sign in / Sign up

Export Citation Format

Share Document