love wave
Recently Published Documents


TOTAL DOCUMENTS

624
(FIVE YEARS 105)

H-INDEX

33
(FIVE YEARS 4)

Ultrasonics ◽  
2022 ◽  
Vol 118 ◽  
pp. 106559
Author(s):  
Kunpeng Chen ◽  
Zhi Wu ◽  
Yuan Jin ◽  
Jianying Hu ◽  
Jianke Du ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Jianbo Guan ◽  
Yu Li ◽  
Guohua Liu

The full-waveform inversion (FWI) of a Love wave has become a powerful tool for shallow-surface site characterization. In classic conjugate gradient algorithm- (CG) based FWI, the energy distribution of the gradient calculated with the adjoint state method does not scale with increasing depth, resulting in diminished illumination capability and insufficient model updating. The inverse Hessian matrix (HM) can be used as a preprocessing operator to balance, filter, and regularize the gradient to strengthen the model illumination capabilities at depth and improve the inversion accuracy. However, the explicit calculation of the HM is unacceptable due to its large dimension in FWI. In this paper, we present a new method for obtaining the inverse HM of the Love wave FWI by referring to HM determination in inverse scattering theory to achieve a preconditioned gradient, and the preconditioned CG (PCG) is developed. This method uses the Love wave wavefield stress components to construct a pseudo-HM to avoid the huge calculation cost. It can effectively alleviate the influence of nonuniform coverage from source to receiver, including double scattering, transmission, and geometric diffusion, thus improving the inversion result. The superiority of the proposed algorithm is verified with two synthetic tests. The inversion results indicate that the PCG significantly improves the imaging accuracy of deep media, accelerates the convergence rate, and has strong antinoise ability, which can be attributed to the use of the pseudo-HM.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3243
Author(s):  
Ambreen Afsar Khan ◽  
Anum Dilshad ◽  
Mohammad Rahimi-Gorji ◽  
Mohammad Mahtab Alam

Considering the propagation of an SH wave at a corrugated interface between a monoclinic layer and heterogeneous half-space in the presence of initial stress. The inhomogeneity in the half-space is the causation of an exponential function of depth. Whittaker’s function is employed to find the half-space solution. The dispersion relation has been established in closed form. The special cases are discussed, and the classical Love wave equation is one of the special cases. The influence of nonhomogeneity parameter, coupling parameter, and depth of irregularity on the phase velocity was studied.


2021 ◽  
Author(s):  
Yan Wang ◽  
Su-Peng Liang ◽  
Shu-Lin Shang ◽  
Yong-Bing Xiao ◽  
Yu-Xin Yuan

Abstract The 3D finite element (3D-FE) simulation and analysis of Love wave sensors based on PIB layers/SiO2/ST-90°X quartz structure, as well as the investigation of coupled resonance effect on the acoustic properties of the devices, are presented in this paper. The mass sensitivity of the basic Love wave device with SiO2 guiding layers solved analytically. And the highest mass sensitivity of 128 m2/kg is obtained as h s/λ =0.175. The sensitivity of the Love wave sensors for sensing VOCs is greatly improved due to the presence of coupled resonance induced by the PIB nanorods on the device surface. The frequency shifts of the sensor corresponding to CH2Cl2, CHCl3, CCl4, C2Cl4, CH3Cl and C2HCl3 with the concentration of 100 ppm are 1.431 kHz, 5.507 kHz, 13.437 kHz, 85.948 kHz, 0.127 kHz and 17.879 kHz, respectively. The viscoelasticity influence of sensitive material on the characteristics of SAW sensors is also studied. Taking account of the viscoelasticity of PIB layers, the sensitivities of SAW sensors with the PIB film and PIB nanorods decay in different degree. The gas sensing property of Love wave sensor with PIB nanorods is superior to that of the PIB films. Meanwhile, the Love wave sensors with PIB sensitive layers show good selectivity to C2Cl4, making it an ideal selection for gas sensing applications.


2021 ◽  
Author(s):  
◽  
Holly Joanne Godfrey

<p>We use continuous seismic data from permanent and temporary, broadband and short-period stations that were operating during 2001 and 2008 to investigate the subsurface velocity structure of the Tongariro Volcanic Centre (TgVC) of New Zealand, particularly the highly active but poorly understood Ruapehu and Tongariro Volcanoes.  Stacks of cross-correlation of two concurrent ambient noise seismograms can be used to estimate the interstation Green's Function, i.e., the impulse response of the earth between the two receivers. The Green's Functions are used to retrieve the dispersion relation (frequency-dependent velocity) of surface waves at different periods, which reflects the shear-wave velocity structure in the Fresnel volume of the propagating surface waves. Several studies have used dispersion measurements from ambient noise cross-correlations to investigate the shallow subsurface shear-wave velocity structure of active volcanoes around the world. Most use vertical components to retrieve the Rayleigh waves, but it is becoming increasingly common to use the horizontal seismogram components in addition to the vertical, giving further constraints to Rayleigh-wave measurements and introducing data relating to Love waves.  We compute 1,048,968 daily cross-correlations for 955 viable station pairs across the two periods, including all nine-components of the cross-correlation tensor where possible. These daily functions are then stacked into 7458 full-stacks, of which we make group velocity dispersion measurements for 2641 RR-, RZ-, TT-, ZR- and ZZ-component stacks. Cross-correlation quality varies across the networks, with some station pairs possibly contaminated with timing errors.  We observe both the fundamental and rst higher-order modes within our database of dispersion measurements. However, correctly identifying the mode of some measurements is challenging as the range of group velocities measured reflects both presence of multiple modes and heterogeneity of the local velocity structure. We assign modes to over 1900 measurements, of which we consider 1373 to be high quality.  We invert fundamental mode Rayleigh- and Love-wave dispersion curves independently and jointly for one dimensional shear-wave velocity profiles at Ruapehu and Tongariro Volcanoes, using dispersion measurements from two individual station pairs and average dispersion curves from measurements within specifi c areas on/around the volcanoes. Our Ruapehu profiles show little velocity variation with depth, suggesting that volcanic edifice is made of material that is compacting and being hydrothermally altered with depth. At Tongariro, we observe larger increases in velocity with depth, which we interpret as different layers within Tongariro's volcanic system. Slow shear-wave velocities, on the order of 1-2 km/s, are consistent with both P-wave velocities from existing velocity pro files of areas within the TgVC, and the observations of worldwide studies of shallow volcanic systems that used ambient noise cross-correlation.  A persistent observation across the majority of our dispersion measurements is that group velocities of the fundamental mode Love-wave group velocity measurements are slower than those of fundamental mode Rayleigh-waves, particularly in the frequency range of 0.25-1 Hz. Similarly, first higher-order mode Love-wave group velocities are slower than first higher-mode Rayleigh-wave velocities. This is inconsistent with the differences between synthetic dispersion curves that were calculated using isotropic, layered velocity models appropriate for Ruapehu and Tongariro. We think the Love-Rayleigh discrepancy is due to structures such as dykes or cracks in the vertical plane having greater influence than horizontal layering on surface-wave propagation. However, several measurements where Love-wave group velocities are faster than Rayleigh-wave group velocities suggests that in some places horizontal layering is the stronger influence.  We also observe that the differences between the Love- and Rayleigh-wave dispersion curves vary with the azimuth of the interstation path across Ruapehu and Tongariro Volcanoes. Some significant differences between Rayleigh-wave velocities of measurements with different interstation orientations are also observed, as are differences between Love-wave velocities. This suggests a component of azimuthal anisotropy within the volcanic structures, which coupled with the radial anistropy makes the shear-wave velocity structures of Ruapehu and Tongariro Volcanoes anisotropic with orthorhombic symmetry. We suggest that further work to determine three-dimensional structure should include provisions for anisotropy with orthorhombic or lower symmetry.</p>


2021 ◽  
Author(s):  
◽  
Holly Joanne Godfrey

<p>We use continuous seismic data from permanent and temporary, broadband and short-period stations that were operating during 2001 and 2008 to investigate the subsurface velocity structure of the Tongariro Volcanic Centre (TgVC) of New Zealand, particularly the highly active but poorly understood Ruapehu and Tongariro Volcanoes.  Stacks of cross-correlation of two concurrent ambient noise seismograms can be used to estimate the interstation Green's Function, i.e., the impulse response of the earth between the two receivers. The Green's Functions are used to retrieve the dispersion relation (frequency-dependent velocity) of surface waves at different periods, which reflects the shear-wave velocity structure in the Fresnel volume of the propagating surface waves. Several studies have used dispersion measurements from ambient noise cross-correlations to investigate the shallow subsurface shear-wave velocity structure of active volcanoes around the world. Most use vertical components to retrieve the Rayleigh waves, but it is becoming increasingly common to use the horizontal seismogram components in addition to the vertical, giving further constraints to Rayleigh-wave measurements and introducing data relating to Love waves.  We compute 1,048,968 daily cross-correlations for 955 viable station pairs across the two periods, including all nine-components of the cross-correlation tensor where possible. These daily functions are then stacked into 7458 full-stacks, of which we make group velocity dispersion measurements for 2641 RR-, RZ-, TT-, ZR- and ZZ-component stacks. Cross-correlation quality varies across the networks, with some station pairs possibly contaminated with timing errors.  We observe both the fundamental and rst higher-order modes within our database of dispersion measurements. However, correctly identifying the mode of some measurements is challenging as the range of group velocities measured reflects both presence of multiple modes and heterogeneity of the local velocity structure. We assign modes to over 1900 measurements, of which we consider 1373 to be high quality.  We invert fundamental mode Rayleigh- and Love-wave dispersion curves independently and jointly for one dimensional shear-wave velocity profiles at Ruapehu and Tongariro Volcanoes, using dispersion measurements from two individual station pairs and average dispersion curves from measurements within specifi c areas on/around the volcanoes. Our Ruapehu profiles show little velocity variation with depth, suggesting that volcanic edifice is made of material that is compacting and being hydrothermally altered with depth. At Tongariro, we observe larger increases in velocity with depth, which we interpret as different layers within Tongariro's volcanic system. Slow shear-wave velocities, on the order of 1-2 km/s, are consistent with both P-wave velocities from existing velocity pro files of areas within the TgVC, and the observations of worldwide studies of shallow volcanic systems that used ambient noise cross-correlation.  A persistent observation across the majority of our dispersion measurements is that group velocities of the fundamental mode Love-wave group velocity measurements are slower than those of fundamental mode Rayleigh-waves, particularly in the frequency range of 0.25-1 Hz. Similarly, first higher-order mode Love-wave group velocities are slower than first higher-mode Rayleigh-wave velocities. This is inconsistent with the differences between synthetic dispersion curves that were calculated using isotropic, layered velocity models appropriate for Ruapehu and Tongariro. We think the Love-Rayleigh discrepancy is due to structures such as dykes or cracks in the vertical plane having greater influence than horizontal layering on surface-wave propagation. However, several measurements where Love-wave group velocities are faster than Rayleigh-wave group velocities suggests that in some places horizontal layering is the stronger influence.  We also observe that the differences between the Love- and Rayleigh-wave dispersion curves vary with the azimuth of the interstation path across Ruapehu and Tongariro Volcanoes. Some significant differences between Rayleigh-wave velocities of measurements with different interstation orientations are also observed, as are differences between Love-wave velocities. This suggests a component of azimuthal anisotropy within the volcanic structures, which coupled with the radial anistropy makes the shear-wave velocity structures of Ruapehu and Tongariro Volcanoes anisotropic with orthorhombic symmetry. We suggest that further work to determine three-dimensional structure should include provisions for anisotropy with orthorhombic or lower symmetry.</p>


Author(s):  
Maxence Rube ◽  
Ollivier Tamarin ◽  
Simon Hemour ◽  
Martine Sebeloue ◽  
Asawari Choudhari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document