Inversion of frequency-domain marine-controlled-source electromagnetic data using genetic algorithm

Author(s):  
Mohit Ayani ◽  
Subhashis Mallick ◽  
Jürg Hunziker ◽  
Lucy MacGregor
2019 ◽  
Vol 220 (2) ◽  
pp. 1066-1077 ◽  
Author(s):  
Mohit Ayani ◽  
Lucy MacGregor ◽  
Subhashis Mallick

SUMMARY We developed a multi-objective optimization method for inverting marine controlled source electromagnetic data using a fast-non-dominated sorting genetic algorithm. Deterministic methods for inverting electromagnetic data rely on selecting weighting parameters to balance the data misfit with the model roughness and result in a single solution which do not provide means to assess the non-uniqueness associated with the inversion. Here, we propose a robust stochastic global search method that considers the objective as a two-component vector and simultaneously minimizes both components: data misfit and model roughness. By providing an estimate of the entire set of the Pareto-optimal solutions, the method allows a better assessment of non-uniqueness than deterministic methods. Since the computational expense of the method increases as the number of objectives and model parameters increase, we parallelized our algorithm to speed up the forward modelling calculations. Applying our inversion to noisy synthetic data sets generated from horizontally stratified earth models for both isotropic and anisotropic assumptions and for different measurement configurations, we demonstrate the accuracy of our method. By comparing the results of our inversion with the regularized genetic algorithm, we also demonstrate the necessity of casting this problem as a multi-objective optimization for a better assessment of uncertainty as compared to a scalar objective optimization method.


2013 ◽  
Vol 14 (2) ◽  
pp. 143-154
Author(s):  
Alexander Krainyukov ◽  
Valery Kutev

Problems of the data processing improving for pavement structure evaluation with help of subsurface radar probing are discussed. Iterative procedure to solve the inverse problem in frequency domain is used on the base of the genetic algorithm. For improving of data processing effectiveness it is proposed to use a modified genetic algorithm with adaptation of search range of pavement parameters. The results of reconstruction of electro-physical characteristics for model of five-layered pavement structure are presented.


2016 ◽  
Vol 124 ◽  
pp. 106-116 ◽  
Author(s):  
Seokmin Oh ◽  
Kyubo Noh ◽  
Soon Jee Seol ◽  
Joongmoo Byun ◽  
Myeong-Jong Yi

Sign in / Sign up

Export Citation Format

Share Document