Quantitative quality of distributed acoustic sensing vertical seismic profile data

2016 ◽  
Vol 35 (7) ◽  
pp. 605-609 ◽  
Author(s):  
Mark E. Willis ◽  
David Barfoot ◽  
Andreas Ellmauthaler ◽  
Xiang Wu ◽  
Oscar Barrios ◽  
...  
2019 ◽  
Vol 7 (1) ◽  
pp. SA11-SA19 ◽  
Author(s):  
Julia Correa ◽  
Roman Pevzner ◽  
Andrej Bona ◽  
Konstantin Tertyshnikov ◽  
Barry Freifeld ◽  
...  

Distributed acoustic sensing (DAS) can revolutionize the seismic industry by using fiber-optic cables installed permanently to acquire on-demand vertical seismic profile (VSP) data at fine spatial sampling. With this, DAS can solve some of the issues associated with conventional seismic sensors. Studies have successfully demonstrated the use of DAS on cemented fibers for monitoring applications; however, such applications on tubing-deployed fibers are relatively uncommon. Application of tubing-deployed fibers is especially useful for preexisting wells, where there is no opportunity to install a fiber behind the casing. In the CO2CRC Otway Project, we acquired a 3D DAS VSP using a standard fiber-optic cable installed on the production tubing of the injector well. We aim to analyze the quality of the 3D DAS VSP on tubing, as well as discuss lessons learned from the current DAS deployment. We find the limitations associated with the DAS on tubing, as well as ways to improve the quality of the data sets for future surveys at Otway. Due to the reduced coupling and the long fiber length (approximately 20 km), the raw DAS records indicate a high level of noise relative to the signal. Despite the limitations, the migrated 3D DAS VSP data recorded by cable installed on tubing are able to image interfaces beyond the injection depth. Furthermore, we determine that the signal-to-noise ratio might be improved by reducing the fiber length.


2017 ◽  
Vol 36 (12) ◽  
pp. 987-993 ◽  
Author(s):  
Xiang Wu ◽  
Mark E. Willis ◽  
William Palacios ◽  
Andreas Ellmauthaler ◽  
Oscar Barrios ◽  
...  

2015 ◽  
Vol 3 (3) ◽  
pp. SW11-SW25 ◽  
Author(s):  
Han Wu ◽  
Wai-Fan Wong ◽  
Zhaohui Yang ◽  
Peter B. Wills ◽  
Jorge L. Lopez ◽  
...  

We have acquired and processed 3D vertical seismic profile (VSP) data recorded simultaneously in two wells using distributed acoustic sensing (DAS) during the acquisition of the 2012 Mars 4D ocean-bottom seismic survey in the deepwater Gulf of Mexico. The objectives of the project were to assess the quality of DAS data recorded in fiber-optic cables from the surface to the total depth, to demonstrate the efficacy of the DAS VSP technology in a deepwater environment, to derisk the use of the technology for future water injection or production monitoring without intervention, and to exploit the velocity information that 3D VSP data provide for evaluating and updating the velocity model. We evaluated the advantages of DAS VSP to reduce costs and intrusiveness, and we determined that high-quality images can be obtained from relatively noisy raw 3D DAS VSP data, as evidenced by the well 1 image, probably the best 3D VSP image we have ever seen. Our results also revealed that the direct arrival traveltimes can be used to assess the quality of an existing velocity model and to invert for an improved velocity model. We identified issues with the DAS acquisition and the processing steps to mitigate them and to handle problems specific to DAS VSP data. We described the steps for conditioning the data before migration, reverse time migration, and postmigration processing to reduce noise artifacts. We outlined a novel first-break picking procedure that works even in the absence of a strong first arrival and a velocity diagnosis method to assess and validate velocity models and velocity updates. Finally, we determined potential applications to 4D monitoring of fluid movement around producer or injector wells, identification of active salt movements, and more accurate imaging and monitoring of complex structures around the wells.


2020 ◽  
Author(s):  
Sepidehalsadat Hendi ◽  
Mostafa Gorjian ◽  
Gilles Bellefleur ◽  
Christopher D. Hawkes ◽  
Don White

Abstract. Fiber optic sensing technology has recently become popular for oil and gas, mining, geotechnical engineering, and hydrogeology applications. With a successful track record in many applications, distributed acoustic sensing using straight fiber optic cables has become a method of choice for seismic studies. However, distributed acoustic sensing using straight fiber optic cables is not able to detect off-axial strain, hence a helically wound cable design was introduced to overcome this limitation. The helically wound cable field data in New Afton deposit showed that the quality of the data is tightly dependent on the incident angle (the angle between the ray and normal vector of the surface) and surrounding media. We introduce a new analytical two-dimensional approach to determine the dynamic strain of a helically wound cable in terms of incident angle in response to elastic plane waves propagating through multilayered media. The method can be used to quickly and efficiently assess the effects of various materials surrounding a helically wound cable. Results from the proposed analytical model are compared with results from numerical modeling obtained with COMSOL Multiphysics, for scenarios corresponding to a real installation of helically wound cable deployed underground at the New Afton mine in British Columbia, Canada. Results from the analytical model are consistent with numerical modeling results. Our modeling results demonstrate the effects of cement quality, and casing installment on the quality of the helically-wound cable response. Numerical modeling results and field data suggest that, even if reasonably effective coupling achieved, the soft nature of the rocks in these intervals would result in low fiber strains for the HWC. The proposed numerical modeling workflow would be applied for more complicated scenarios (e.g., non-linear material constitutive behaviour, and the effects of pore fluids). The results of this paper can be used as a guideline for analyzing the effect of surrounding media and incident angle on the response of helically wound cable, optimizing the installation of helically wound cable in various conditions, and to validate boundary conditions of 3-D numerical model built for analyzing complex scenarios.


Sign in / Sign up

Export Citation Format

Share Document