Acquisition/Processing

2021 ◽  
Vol 40 (6) ◽  
pp. 460-463
Author(s):  
Lionel J. Woog ◽  
Anthony Vassiliou ◽  
Rodney Stromberg

In seismic data processing, static corrections for near-surface velocities are derived from first-break picking. The quality of the static corrections is paramount to developing an accurate shallow velocity model, a model that in turn greatly impacts the subsequent seismic processing steps. Because even small errors in first-break picking can greatly impact the seismic velocity model building, it is necessary to pick high-quality traveltimes. Whereas various artificial intelligence-based methods have been proposed to automate the process for data with medium to high signal-to-noise ratio (S/N), these methods are not applicable to low-S/N data, which still require intensive labor from skilled operators. We successfully replace 160 hours of skilled human work with 10 hours of processing by a single NVIDIA Quadro P6000 graphical processing unit by reducing the number of human picks from the usual 5%–10% to 0.19% of available gathers. High-quality inferred picks are generated by convolutional neural network-based machine learning trained from the human picks.

Geophysics ◽  
2019 ◽  
Vol 85 (1) ◽  
pp. U21-U29
Author(s):  
Gabriel Fabien-Ouellet ◽  
Rahul Sarkar

Applying deep learning to 3D velocity model building remains a challenge due to the sheer volume of data required to train large-scale artificial neural networks. Moreover, little is known about what types of network architectures are appropriate for such a complex task. To ease the development of a deep-learning approach for seismic velocity estimation, we have evaluated a simplified surrogate problem — the estimation of the root-mean-square (rms) and interval velocity in time from common-midpoint gathers — for 1D layered velocity models. We have developed a deep neural network, whose design was inspired by the information flow found in semblance analysis. The network replaces semblance estimation by a representation built with a deep convolutional neural network, and then it performs velocity estimation automatically with recurrent neural networks. The network is trained with synthetic data to identify primary reflection events, rms velocity, and interval velocity. For a synthetic test set containing 1D layered models, we find that rms and interval velocity are accurately estimated, with an error of less than [Formula: see text] for the rms velocity. We apply the neural network to a real 2D marine survey and obtain accurate rms velocity predictions leading to a coherent stacked section, in addition to an estimation of the interval velocity that reproduces the main structures in the stacked section. Our results provide strong evidence that neural networks can estimate velocity from seismic data and that good performance can be achieved on real data even if the training is based on synthetics. The findings for the 1D problem suggest that deep convolutional encoders and recurrent neural networks are promising components of more complex networks that can perform 2D and 3D velocity model building.


Geophysics ◽  
2020 ◽  
Vol 85 (5) ◽  
pp. U109-U119
Author(s):  
Pengyu Yuan ◽  
Shirui Wang ◽  
Wenyi Hu ◽  
Xuqing Wu ◽  
Jiefu Chen ◽  
...  

A deep-learning-based workflow is proposed in this paper to solve the first-arrival picking problem for near-surface velocity model building. Traditional methods, such as the short-term average/long-term average method, perform poorly when the signal-to-noise ratio is low or near-surface geologic structures are complex. This challenging task is formulated as a segmentation problem accompanied by a novel postprocessing approach to identify pickings along the segmentation boundary. The workflow includes three parts: a deep U-net for segmentation, a recurrent neural network (RNN) for picking, and a weight adaptation approach to be generalized for new data sets. In particular, we have evaluated the importance of selecting a proper loss function for training the network. Instead of taking an end-to-end approach to solve the picking problem, we emphasize the performance gain obtained by using an RNN to optimize the picking. Finally, we adopt a simple transfer learning scheme and test its robustness via a weight adaptation approach to maintain the picking performance on new data sets. Our tests on synthetic data sets reveal the advantage of our workflow compared with existing deep-learning methods that focus only on segmentation performance. Our tests on field data sets illustrate that a good postprocessing picking step is essential for correcting the segmentation errors and that the overall workflow is efficient in minimizing human interventions for the first-arrival picking task.


Geophysics ◽  
2021 ◽  
pp. 1-73
Author(s):  
Hani Alzahrani ◽  
Jeffrey Shragge

Data-driven artificial neural networks (ANNs) offer a number of advantages over conventional deterministic methods in a wide range of geophysical problems. For seismic velocity model building, judiciously trained ANNs offer the possibility of estimating high-resolution subsurface velocity models. However, a significant challenge of ANNs is training generalization, which is the ability of an ANN to apply the learning from the training process to test data not previously encountered. In the context of velocity model building, this means learning the relationship between velocity models and the corresponding seismic data from a set of training data, and then using acquired seismic data to accurately estimate unknown velocity models. We ask the following question: what type of velocity model structures need be included in the training process so that the trained ANN can invert seismic data from a different (hypothetical) geological setting? To address this question, we create four sets of training models: geologically inspired and purely geometrical, both with and without background velocity gradients. We find that using geologically inspired training data produce models with well-delineated layer interfaces and fewer intra-layer velocity variations. The absence of a certain geological structure in training models, though, hinders the ANN's ability to recover it in the testing data. We use purely geometric training models consisting of square blocks of varying size to demonstrate the ability of ANNs to recover reasonable approximations of flat, dipping, and curved interfaces. However, the predicted models suffer from intra-layer velocity variations and non-physical artifacts. Overall, the results successfully demonstrate the use of ANNs in recovering accurate velocity model estimates, and highlight the possibility of using such an approach for the generalized seismic velocity inversion problem.


Sign in / Sign up

Export Citation Format

Share Document