Holocene sea-level fluctuations inferred from the evolution of depositional environments of the southern Langebaan Lagoon salt marsh, South Africa

The Holocene ◽  
2001 ◽  
Vol 11 (4) ◽  
pp. 395-405 ◽  
Author(s):  
John S. Compton
2007 ◽  
Vol 44 (10) ◽  
pp. 1453-1465 ◽  
Author(s):  
Julia F Daly ◽  
Daniel F Belknap ◽  
Joseph T Kelley ◽  
Trevor Bell

Differential sea-level change in formerly glaciated areas is predicted owing to variability in extent and timing of glacial coverage. Newfoundland is situated close to the margin of the former Laurentide ice sheet, and the orientation of the shoreline affords the opportunity to investigate variable rates and magnitudes of sea-level change. Analysis of salt-marsh records at four sites around the island yields late Holocene sea-level trends. These trends indicate differential sea-level change in recent millennia. A north–south geographic trend reflects submergence in the south, very slow sea-level rise in the northeast, and a recent transition from falling to rising sea-level at the base of the Northern Peninsula. This variability is best explained as a continued isostatic response to deglaciation.


2019 ◽  
Vol 500 (1) ◽  
pp. 267-276 ◽  
Author(s):  
Aaron Micallef ◽  
Aggeliki Georgiopoulou ◽  
Andrew Green ◽  
Vittorio Maselli

AbstractThe sheared-passive margin offshore Durban (South Africa) is characterized by a narrow continental shelf and steep slope hosting numerous submarine canyons. Supply of sediment to the margin is predominantly terrigenous, dominated by discharge from several short but fast-flowing rivers. International Ocean Discovery Program Expedition 361 provides a unique opportunity to investigate the role of sea-level fluctuations on the sedimentation patterns and slope instability along the South African margin. We analysed >300 sediment samples and downcore variations in P-wave, magnetic susceptibility, bioturbation intensity and bulk density from site U1474, as well as regional seismic reflection profiles to: (1) document an increase in sand input since the Mid-Pliocene; (2) associate this change to a drop in sea-level and extension of subaerial drainage systems towards the shelf-edge; (3) demonstrate that slope instability has played a key role in the evolution of the South Africa margin facing the Natal Valley. Furthermore, we highlight how the widespread occurrence of failure events reflects the tectonic control on the morphology of the shelf and slope, as well as bottom-current scour and instability of fan complexes. This information is important to improve hazard assessment in a populated coastal region with growing offshore hydrocarbon activities.


2019 ◽  
Vol 498 (1) ◽  
pp. 233-255 ◽  
Author(s):  
Holger Gebhardt ◽  
Samuel O. Akande ◽  
Olabisi A. Adekeye

AbstractThe Benue Trough formed in close relation to the opening of the South Atlantic and experienced sea-level fluctuations of different magnitudes during the Cenomanian to Coniacian interval. We identify depositional environments from outcrop sections and a drilling as control record. Lines of evidence for the interpretation include facies analyses, foraminiferal assemblage composition (P/B-ratio) and the presence of planktonic deep-water indicators. While the analysis of the well data from the Dahomey Basin indicates a continuous deep-water (bathyal) environment, the succession in the Nkalagu area of the Lower Benue Trough evolved in a different and more complex way. Beginning with latest Cenomanian shoreface to shelf deposits, a long period of subsidence lasted until the middle Turonian when pelagic shales and calcareous turbidites were deposited at upper to middle bathyal depths. These conditions continued during late Turonian and Coniacian times. The general deepening trend of the Lower Benue Trough was mainly controlled by tectonic subsidence and was superimposed by eustatic sea-level changes, resulting in periodically changing palaeowater depths. We were able to identify eight sea-level rises and falls that can be attributed to 405 kyr eccentricity cycles. The amplitudes of the sea-level changes were most likely in the range of several tens to a few hundred metres. The deposition of carbonate turbidites at Nkalagu was probably triggered by eustatic sea-level lowstands.


2020 ◽  
Vol 426 ◽  
pp. 106213
Author(s):  
Xiudong Hao ◽  
Xuhong Ouyang ◽  
Libo Zheng ◽  
Bin Zhuo ◽  
Yunlong Liu

2014 ◽  
Vol 151 (5) ◽  
pp. 938-955 ◽  
Author(s):  
NICOLAS OLIVIER ◽  
ARNAUD BRAYARD ◽  
EMMANUEL FARA ◽  
KEVIN G. BYLUND ◽  
JAMES F. JENKS ◽  
...  

AbstractIn Timpoweap Canyon near Hurricane (Utah, USA), spectacular outcrop conditions of Early Triassic rocks document the geometric relationships between a massive Smithian fenestral-microbial unit and underlying, lateral and overlying sedimentary units. This allows us to reconstruct the evolution of depositional environments and high-frequency relative sea-level fluctuations in the studied area. Depositional environments evolved from a coastal plain with continental deposits to peritidal settings with fenestral-microbial limestones, which are overlain by intertidal to shallow subtidal marine bioclastic limestones. This transgressive trend of a large-scale depositional sequence marks a long-term sea-level rise that is identified worldwide after the Permian–Triassic boundary. The fenestral-microbial sediments were deposited at the transition between continental settings (with terrigenous deposits) and shallow subtidal marine environments (with bioturbated and bioclastic limestones). Such a lateral zonation questions the interpretation of microbial deposits as anachronistic and disaster facies in the western USA basin. The depositional setting may have triggered the distribution of microbial deposits and contemporaneous marine biota. The fenestral-microbial unit is truncated by an erosional surface reflecting a drop in relative sea level at the scale of a medium depositional sequence. The local inherited topography allowed the recording of small-scale sequences characterized by clinoforms and short-distance lateral facies changes. Stratal stacking pattern and surface geometries allow the reconstruction of relative sea-level fluctuations and tracking of shoreline migrations. The stacking pattern of these small-scale sequences and the amplitude of corresponding high-frequency sea-level fluctuations are consistent with climatic control. Large- and medium-scale sequences suggest a regional tectonic control.


2020 ◽  
Vol 18 (4) ◽  
pp. 4-9
Author(s):  
Sven O Egenhoff ◽  
Neil S Fishman

The Bakken Formation is a major petroleum producer in the continental US. However, its deposition in an intracratonic, low-gradient setting has often been mistakenly described as “layer-cake”. This contribution is designed to highlight the time-transgressive nature of its main petroleum-producer, the middle Bakken member. Correlation of individual parasequences reveal the subtle nature of otherwise invisible low-angle stratigraphic geometries. Sequence stratigraphically-relevant surfaces occur throughout the unit and subdivide the entire Bakken into 5 third-order sequences; one of them is a hidden sequence at the base of the petroleum-producing middle Bakken indicating both a lowstand and a subsequent transgression. The organic-rich shales above and below the middle Bakken were deposited in an oxygen-deficient environment and show several burrow/fecal string types and indications of active currents during deposition. The Bakken records high amplitude sea-level changes during sequences compared to relative low amplitude sea-level changes of parasequences. This, coupled with a likely mismatch in timing of Bakken deposition relative to world-wide ice-age-induced cyclicity makes it unlikely that the Bakken sea-level fluctuations were dominated by glaciation.


2020 ◽  
Vol 45 (1-2) ◽  
pp. 49-64 ◽  
Author(s):  
JL Raw ◽  
T Riddin ◽  
J Wasserman ◽  
TWK Lehman ◽  
TG Bornman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document