Empirical Linear Seismic Site Amplification in Central and Eastern North America

2019 ◽  
Vol 35 (2) ◽  
pp. 849-881 ◽  
Author(s):  
Grace A. Parker ◽  
Jonathan P. Stewart ◽  
Youssef M. A. Hashash ◽  
Ellen M. Rathje ◽  
Kenneth W. Campbell ◽  
...  

We present empirical linear site amplification models conditioned on time-averaged shear wave velocity in the upper 30 m ( VS30) for central and eastern North America. The models are derived from ground motion data and site condition information from the NGA-East project and are intended for use with reference rock ground motion models. Site amplification is found to scale with VS30 for intermediate to stiff site conditions ( VS30 > 300 m/s) in a weaker manner than for active tectonic regions such as the western United States. For stiff sites ( >800 m/s), we find differences in site amplification for previously glaciated and nonglaciated regions, with nonglaciated sites having lower amplification. The models were developed using a combination of least-squares, mixed effects, and Bayesian techniques; the latter show that accounting for predictor uncertainty does not appreciably affect the median model but decreases model dispersion. Our VS30-scaling models are modular and additive to simulation-based models for the nonlinear components of site response. A limitation of the present models is that they do not account for site-specific resonance effects.

2020 ◽  
Vol 36 (1) ◽  
pp. 87-110 ◽  
Author(s):  
Youssef M. A. Hashash ◽  
Okan Ilhan ◽  
Behzad Hassani ◽  
Gail M. Atkinson ◽  
Joseph Harmon ◽  
...  

This article evaluates linear simulation-based and empirical site amplification models including site natural period dependency parameters to account for the distinctive amplification behavior near site fundamental frequencies resulting from the sharp impedance contrast between soil and underlying hard bedrock in central and eastern North America (CENA). The simulation-based amplification models are developed using 581,685 frequency-domain linear analyses generated from a parametric study and include VS30-scaling and site natural period ( Tnat) parameters. The empirical models are derived from residuals analyses of ground-motion models for two reference conditions: B/C boundary ( VS30 = 760 m/s) and CENA hard-rock condition ( VS = 3000 m/s). The simulation-based and empirical models are compared for 8 site profiles in CENA to measured horizontal-to-vertical (H/V) component response spectral (RS) ratios, the mean of linear simulations for similar sites, and one-dimensional (1D) linear site response analysis for four of these sites. Comparisons between observed and estimated site amplification behaviors highlight model dependency on Tnat in CENA. Model consistencies and differences related to the distinct linear amplification features near site fundamental frequency are discussed.


2020 ◽  
Vol 36 (1) ◽  
pp. 69-86 ◽  
Author(s):  
Youssef M. A. Hashash ◽  
Okan Ilhan ◽  
Joseph A. Harmon ◽  
Grace A. Parker ◽  
Jonathan P. Stewart ◽  
...  

This article presents recommendations for nonlinear site amplification models in Central and Eastern North America (CENA), which are developed from one-dimensional site response analyses results and accompanies linear site amplification model in a companion article. Two median nonlinear amplification models using identical functional forms are produced as a function of VS30 and peak ground acceleration for reference conditions ( PGAr) of VS = 3000 m/s and VS30 = 760 m/s. An epistemic uncertainty model on median nonlinear amplification is proposed as a piecewise functional form to generate reasonable variations of nonlinear amplification across the period and VS30 ranges of interest. Limitations of the models are based on both the methodology of the model derivation and assumptions of nonlinear amplification model forms.


2020 ◽  
Vol 91 (2A) ◽  
pp. 977-991
Author(s):  
David M. Boore

Abstract The three sets of ground-motion predictions (GMPs) of Boore (2018; hereafter, B18) are compared with a much larger dataset than was used in deriving the predictions. The B18 GMPs work well for response spectra at periods between ∼0.15 and 4.0 s after an adjustment accounting for a path bias at distances beyond 200 km—this was the maximum distance used to derive the stress parameters on which the simulations in B18 are based. An additional offset adjustment is needed in the B18 predictions for short and long periods. The adjustment at short periods may be because the κ0 of 0.006 s stipulated by the Next Generation Attenuation-East (NGA-East) project to be used in deriving the GMPs is inconsistent with the observations on rock sites. The explanation for the offset adjustment at long periods is not clear, but it could be a combination of limitations of the point-source stochastic model for longer period motions, as well as a decreasing number of observations at longer periods available to constrain the simulations on which the predictions are based. The predictions of B18, developed for very-hard-rock sites (VS30 of 2000 and 3000  m/s), have here been extended down to VS30 values as low as 200  m/s. I find, as have others, that for a given VS30, there is generally less site amplification for central and eastern North America (CENA) than for the active crustal region dataset used for the Boore, Stewart, et al. (2014; hereafter, BSSA14) GMP equations. This might have an impact on conclusions of several previous studies of CENA GMPs that used the site amplifications in BSSA14 in comparing data and predictions. An additional finding is that the κ0 implied by recordings on a subset of stations in the Charlevoix region located on rock (data from these stations were not used in the analysis described earlier) is more consistent with a value near 0.014 s than the 0.006 s value used in B18 and the NGA-East project.


2019 ◽  
Vol 35 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Georgios Zalachoris ◽  
Ellen M. Rathje

A ground motion model (GMM) tuned to the characteristics of the observed, and potentially induced, seismicity in Texas, Oklahoma, and Kansas is developed using a database of 4,528 ground motions recorded during 376 events of Mw > 3.0 in the region. The GMM is derived using the referenced empirical approach with an existing Central and Eastern North America model as the reference GMM and is applicable for Mw = 3.0–5.8 and hypocentral distances less than 500 km. The proposed model incorporates weaker magnitude scaling than the reference GMM for periods less than about 1.0 s, resulting in smaller predicted ground motions at larger magnitudes. The proposed model predicts larger response spectral accelerations at short hypocentral distances (≤20 km), which is likely because of the shallow hypocenters of events in Texas, Oklahoma, and Kansas. Finally, the VS30 scaling for the newly developed model predicts less amplification at VS30 < 600 m/s than the reference GMM, which is likely because of the generally thinner sediments in the study area. This finding is consistent with recent studies regarding site amplification in Central and Eastern North America.


2020 ◽  
Vol 36 (1) ◽  
pp. 42-68 ◽  
Author(s):  
Jonathan P. Stewart ◽  
Grace A. Parker ◽  
Gail M. Atkinson ◽  
David M. Boore ◽  
Youssef M. A. Hashash ◽  
...  

The United States Geological Survey national seismic hazard maps have historically been produced for a reference site condition of VS30 = 760 m/s. For other site conditions, site factors are used, which heretofore have been developed using ground motion data and simulations for shallow earthquakes in active tectonic regions. Research results from the Next Generation Attenuation–East (NGA-East) project, as well as previous and contemporaneous related research, demonstrate different levels of site amplification in central and eastern North America (CENA) as compared to active regions. We provide recommendations for modeling of ergodic site amplification in CENA based primarily on research results from the literature. The recommended model has three additive terms in natural logarithmic units. Two describe linear site amplification: an empirically constrained VS30-scaling term relative to a 760 m/s reference and a simulation-based term to adjust site amplification from the 760 m/s reference to the CENA reference of VS = 3000 m/s. The third term is a nonlinear model that is described in a companion document. All median model components are accompanied by epistemic uncertainty models.


2019 ◽  
Vol 35 (2) ◽  
pp. 787-814 ◽  
Author(s):  
Joseph Harmon ◽  
Youssef M. A. Hashash ◽  
Jonathan P. Stewart ◽  
Ellen M. Rathje ◽  
Kenneth W. Campbell ◽  
...  

This paper presents the development of large-scale simulation-based data sets used to inform new site amplification models for Central and Eastern North America (CENA). Linear elastic, equivalent linear, and nonlinear one-dimensional site response simulations of site conditions in CENA are employed. An analysis tree is introduced to capture the range of expected CENA geologic conditions. Independent variables include the following: (1) representative and random shear wave velocity ( VS) profiles using data from the literature; (2) randomized, nonlinear shear modulus reduction and damping vs. shear strain curves with constraint on soil shear strength; and (3) outcrop ground motions representative of the VS = 3,000 m/s CENA reference rock condition. The resulting database of 1,747,278 simulations is conditioned on several parameters relevant to site amplification, which facilitates model development that is the subject of a companion paper. The database is openly available for use by other researchers.


2021 ◽  
pp. 875529302110187
Author(s):  
Jeff Bayless

The anelastic attenuation term found in ground motion prediction equations (GMPEs) represents the distance dependence of the effect of intrinsic and scattering attenuation on the wavefield as it propagates through the crust and contains the frequency-dependent quality factor, [Formula: see text], which is an inverse measure of the effective anelastic attenuation. In this work, regional estimates of [Formula: see text] in Central and Eastern North America (CENA) are developed using the NGA-East regionalization. The technique employed uses smoothed Fourier amplitude spectrum (FAS) data from well-recorded events in CENA as collected and processed by NGA-East. Regional [Formula: see text] is estimated using an assumption of average geometrical spreading applicable to the distance ranges considered. Corrections for the radiation pattern effect and for site response based on [Formula: see text] result in a small but statistically significant improvement to the residual analysis. Apparent [Formula: see text] estimates from multiple events are combined within each region to develop the regional models. Models are provided for three NGA-East regions: the Gulf Coast, Central North America, and the Appalachian Province. Consideration of the model uncertainties suggests that the latter two regions could be combined. There were not sufficient data to adequately constrain the model in the Atlantic Coastal Plain region. Tectonically stable regions are usually described by higher [Formula: see text] and weaker frequency dependence ([Formula: see text]), while active regions are typically characterized by lower [Formula: see text] and stronger frequency dependence, and the results are consistent with these expectations. Significantly different regional [Formula: see text] is found for events with data recorded in multiple regions, which supports the NGA-East regionalization. An inspection of two well-recorded events with data both in the Mississippi embayment and in southern Texas indicates that the Gulf Coast regionalization by Cramer in 2017 may be an improvement to that of NGA-East for anelastic attenuation. The [Formula: see text] models developed serve as epistemic uncertainty alternatives in CENA based on a literature review and a comparison with previously published models.


Sign in / Sign up

Export Citation Format

Share Document