scholarly journals Prospective evaluation of 2-[18F]-2-deoxy-D-glucose positron emission tomography in staging of regional lymph nodes in patients with cutaneous malignant melanoma.

1998 ◽  
Vol 16 (5) ◽  
pp. 1770-1776 ◽  
Author(s):  
D J Macfarlane ◽  
V Sondak ◽  
T Johnson ◽  
R L Wahl

PURPOSE To assess prospectively the accuracy of 2-[l8F]-2-deoxy-D-glucose positron emission tomography (FDG-PET) for predicting regional node involvement in cutaneous malignant melanoma (CMM). PATIENTS AND METHODS Twenty-three patients with CMM (primary lesions > 1.5 mm thick) scheduled for lymph node dissection (LND) were preoperatively studied with FDG-PET. Thirteen patients underwent therapeutic LND of 14 node basins, while nine patients had elective LND of 10 node basins. Medical problems precluded surgery in one patient. Two observers unaware of the clinical node status-apart from whether a recent surgical scar was present-read attenuation-corrected reconstructed transverse images acquired between 50 and 60 minutes after injection. Intensity of FDG uptake was scored as 0 to 3 + on a semiquantitative four-point scale: 0, no uptake; 1 +, faint; 2 +, moderate; and 3 +, intense uptake. A node group was considered positive on FDG-PET if it contained at least one focus of FDG uptake of > or = 2+ intensity. Histopathologic examination of the 24 dissected node groups served as a reference. RESULTS Considering regional node basins, PET imaging demonstrated 11 true-positive (TP), 10 true-negative (TN), two false-negative (FN), and one false-positive (FP) result, for an overall accuracy of 88%. Histopathologic from one FN case showed seven malignant cells in a marginal node sinus. The FP was due to reactive changes postbiopsy. In one patient, clinically involved lymph nodes were correctly categorized TN by PET. At least four additional 2 + foci seen outside the dissected regions on PET may represent metastases and are being monitored. CONCLUSION FDG-PET accurately predicted regional node status in 88% of CMM cases. The failure to detect micrometastatic disease may be due to the limitations of the imaging equipment and technique used here.

Blood ◽  
2008 ◽  
Vol 111 (5) ◽  
pp. 2909-2918 ◽  
Author(s):  
Matthias Stelljes ◽  
Sven Hermann ◽  
Jörn Albring ◽  
Gabriele Köhler ◽  
Markus Löffler ◽  
...  

Gastrointestinal graft-versus-host disease (GVHD) is a common and potentially life-threatening complication after allogeneic hematopoietic stem-cell transplantation (HSCT). Noninvasive tests for assessment of GVHD activity are desirable but lacking. In the present study, we were able to visualize intestinal GVHD-associated inflammation in an allogeneic murine transplantation model by 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) in vivo. A predominant localization of intestinal GVHD to the colon was verified by histology and fluorescence reflectance imaging of enhanced green fluorescent protein (EGFP)–expressing donor cells. Colonic infiltration by EGFP+ donor lymphocytes matched increased FDG uptake in PET examinations. These preclinical data were prospectively translated into 30 patients with suspected intestinal GVHD beyond 20 days after transplantation. A total of 14 of 17 patients with a diagnostic histology showed significant FDG uptake of the gut, again predominantly in the colon. No increased FDG uptake was detected in 13 patients without histologic evidence of intestinal GVHD. Our findings indicate that FDG-PET is a sensitive and specific noninvasive imaging technique to assess intestinal GVHD, map its localization, and predict and monitor treatment responsiveness. Novel targeted tracers for PET may provide new insights into the pathophysiology of GVHD and bear the potential to further improve GVHD diagnosis.


2012 ◽  
Vol 39 (8) ◽  
pp. 1659-1665 ◽  
Author(s):  
TAKAYOSHI OWADA ◽  
REIKA MAEZAWA ◽  
KAZUHIRO KURASAWA ◽  
HARUTSUGU OKADA ◽  
SATOKO ARAI ◽  
...  

Objective.To evaluate the usefulness of F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) imaging in the management of patients with inflammatory myopathy. We examined whether FDG-PET scanning detects myositis or extramuscular lesions in patients with polymyositis (PM) and dermatomyositis (DM).Methods.FDG-PET imaging was performed in 24 patients with active inflammatory myopathy (PM, 11; DM, 13). The images were read by radiologists in a blinded manner. FDG uptake into muscles was judged positive when the intensity of muscles was higher than or equal to that of the liver. As controls, FDG imaging findings of patients with a lung mass and without muscle diseases were used. To investigate associations between FDG-PET findings and clinical/laboratory findings, the patients’ medical records were reviewed retrospectively.Results.Increased FDG uptake in muscles was found in 8 of 24 (33%) patients. In 67 of 69 (97%) controls without muscle diseases, no muscle FDG uptake was detected. The sensitivity of FDG-PET to detect myositis was lower than that of electromyogram (EMG), magnetic resonance imaging, and muscle biopsy. There were no significant differences in clinical manifestations between patients with and without increased FDG uptake in muscles, although patients with FDG muscle uptake had a tendency to have extended myositis with endomysial cell infiltration. FDG-PET detected neoplasms in patients with associated malignancy. FDG uptake in lungs was found in 7 of 18 patients with interstitial lung disease.Conclusion.FDG-PET imaging has limited usefulness for the evaluation of myositis in patients with PM/DM because of its low sensitivity, although it might be useful for detection of malignancy in these patients.


2020 ◽  
Vol 27 (3) ◽  
pp. 509-515
Author(s):  
Erik Groot Jebbink ◽  
Leo H. van Den Ham ◽  
Beau B. J. van Woudenberg ◽  
Riemer H. J. A. Slart ◽  
Clark J. Zeebregts ◽  
...  

Purpose: To investigate the physiological uptake of hybrid fluorine-18-fluorodeoxyglucose (FDG)–positron emission tomography/computed tomography (PET/CT) before and after an uncomplicated endovascular aneurysm sealing (EVAS) procedure as a possible tool to diagnose EVAS graft infection and differentiate from postimplantation syndrome. Materials and Methods: Eight consecutive male patients (median age 78 years) scheduled for elective EVAS were included in the prospective study ( ClinicalTrials.gov identifier NCT02349100). FDG-PET/CT scans were performed in all patients before the procedure and 6 weeks after EVAS. The abdominal aorta was analyzed in 4 regions: suprarenal, infrarenal neck, aneurysm sac, and iliac. The following parameters were obtained for each region: standard uptake value (SUV), tissue to background ratio (TBR), and visual examination of FDG uptake to ascertain its distribution. Demographic data were obtained from medical files and scored based on reporting standards. Results: Visual examination showed no difference between pre- and postprocedure FDG uptake, which was homogenous. In the suprarenal region no significant pre- and postprocedure differences were observed for the SUV and TBR parameters. The infrarenal neck region showed a significant decrease in the SUV and no significant decrease in the TBR. The aneurysm sac and iliac regions both showed a significant decrease in SUV and TBR between the pre- and postprocedure scans. Conclusion: Physiological FDG uptake after EVAS was stable or decreased with regard to the preprocedure measurements. Future research is needed to assess the applicability and cutoff values of FDG-PET/CT scanning to detect endograft infection after EVAS.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4738-4738
Author(s):  
Masaaki Takatoku ◽  
Takahiro Nagashima ◽  
Toshihiko Sato ◽  
Tadashi Nagai ◽  
Norio Komatsu ◽  
...  

Abstract Usefulness of FDG-PET (positron emission tomography) in the discrimination between hypoplastic myelodysplastic syndromes and aplastic anemia Masaaki Takatoku, MD PhD1, Takahiro Nagashima, MD*1, Toshihiko Sato, MD*2, Tadashi Nagai, MD PhD1, Norio Komatsu, MD PhD1, Keiya Ozawa, MD PhD1 1Division of Hematology, Department of Medicine, Jichi Medical School, Minamikawachi, Tochigi, Japan; 2Utsunomiya Central Clinic, Utsunomiya, Tochigi, Japan It is sometimes difficult to distinguish hypoplastic myelodysplastic syndromes (MDS) from aplastic anemia (AA) using current diagnostic methods, such as bone marrow pathology and chromosome analysis. Although magnetic resonance imaging (MRI) is useful for diagnosis of MDS with hypercellular marrow, it is not easy to discriminate between hypoplastic MDS and AA using this method, because the high intensity pattern on T1 enhanced image is similar in these disorders. Recently, quantitative imaging with fluorine-18 fluorodeoxyglucose (FDG) PET has been recognized as a useful method for the discrimination between benign and malignant regions in various conditions. Because the decrease in the FDG-uptake at the late phase is much slower in malignant region than in benign region, dual time point imaging provides more accurate information than single time point scanning. In this study, we investigated the usefulness of dual time protocol FDG-PET in the differential diagnosis of hypoplastic MDS and AA. Six patients [2 with AA, 4 with MDS (including one hypoplastic MDS)] and 30 healthy adults agreed to participate in this study. Bone marrow biopsy, FDG- PET, MRI, and computed tomography (CT) were carried out, and a PET functional image was integrated into a CT anatomical image. The spine, femur and sternum lesions were detected by their increased 18F-FDG uptake at 60 and 120 min after injection of 0.12 mCi/kg of 18F-FDG. The maximum and mean lesional standardized uptake values (SUVmax and SUVmean) after 60 and 120 min were determined. The median SUVmax and SUVmean values of normal lumbar regions at 60 min were 1.94 ± 0.16 and 1.77 ± 0.11, respectively. In the MDS cases, those values at 60 min were 2.39 (range 2.12–2.72) and 2.06 (range 1.91–2.23), respectively. At 120 min, the median SUVmax and SUVmean values of normal cases were 1.33 ± 0.21 and 1.20 ± 0.16, respectively, whereas those of MDS cases were 2.42 (range 2.08–2.78) and 2.14 (range 1.50–2.26), respectively. Thus, the SUVmax and SUVmean values in MDS cases remained at high levels at 120 min in contrast to the decreased levels in normal cases. It is noteworthy that the SUVmax and SUVmean values of a hypoplastic MDS case were also high (2.21 and 2.01 at 60 min, 2.16 and 1.97 at 120 min), suggesting that bone marrow in MDS has a hyper metabolic state of glucose like other malignant disorders. We also observed patchy hot areas, which may be a visualization of ineffective hematopoiesis, throughout the spine image of hypoplastic MDS. In contrast, the SUVmax and SUVmean values of AA cases were 1.82 and 1.66 at 60 min and 1.31 and 1.19 at 120 min (case 1), 1.69 and 1.61 at 60 min and 1.30 and 1.13 at 120 min (case 2), indicating that there is no difference in the SUVmax and SUVmean values at the both time points between AA and normal cases. These results raised the possibility that the discrimination between hypoplastic MDS and AA, in which MRI shows a common observation, can be made using FDG-PET.


2001 ◽  
Vol 19 (15) ◽  
pp. 3516-3523 ◽  
Author(s):  
W. B. Eubank ◽  
D. A. Mankoff ◽  
J. Takasugi ◽  
H. Vesselle ◽  
J. F. Eary ◽  
...  

PURPOSE: To determine the prevalence of suspected disease in the mediastinum and internal mammary (IM) node chain by18fluorodeoxyglucose (FDG) positron emission tomography (PET), compared with conventional staging by computed tomography (CT) in patients with recurrent or metastatic breast cancer.PATIENTS AND METHODS: We retrospectively evaluated intrathoracic lymph nodes using FDG PET and CT data in 73 consecutive patients with recurrent or metastatic breast cancer who had both CT and FDG PET within 30 days of each other. In reviews of CT scans, mediastinal nodes measuring 1 cm or greater in the short axis were considered positive. PET was considered positive when there were one or more mediastinal foci of FDG uptake greater than the mediastinal blood pool.RESULTS: Overall, 40% of patients had abnormal mediastinal or IM FDG uptake consistent with metastases, compared with 23% of patients who had suspiciously enlarged mediastinal or IM nodes by CT. Both FDG PET and CT were positive in 22%. In the subset of 33 patients with assessable follow-up by CT or biopsy, the sensitivity, specificity, and accuracy for nodal disease was 85% , 90%, and 88%, respectively, by FDG PET; 54% , 85%, and 73%, respectively, by prospective interpretation of CT; and 50%, 83%, and 70%, respectively, by blinded observer interpretation of CT. Among patients suspected of having only locoregional disease recurrence (n = 33), 10 had unsuspected mediastinal or IM disease by FDG PET.CONCLUSION: FDG PET may uncover disease in these nodal regions not recognized by conventional staging methods. Future prospective studies using histopathology for confirmation are needed to validate the preliminary findings of this retrospective study.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4916-4916
Author(s):  
Masaaki Takatoku ◽  
Toshihiko Sato ◽  
Kaoru Hatano ◽  
Ken Omine ◽  
Masaki Mori ◽  
...  

Abstract Myelodysplastic syndromes (MDS) and aplastic anemia (AA) are classified bone marrow failure syndromes. Their clinical and pathological features partly overlap. It is sometimes difficult to distinguish hypoplastic MDS from AA by using current common diagnostic methods such as bone marrow biopsy and chromosome analysis. Although magnetic resonance image (MRI) is useful for diagnosis of MDS with hypercellular bone marrow, it is difficult to discriminate between hypoplastic MDS and AA using this method because the high intensity patterns on T1-enhanced images are similar in these disorders. Quantitative imaging with fluorine-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) has been recognized as a useful examination for discrimination between benign and malignant regions in various conditions. Since the decrease in FDG uptake at the late phase is much slower in a malignant region than in a benign region, dual time point imaging provides more accurate information than does conventional single time point scanning. In this study, we investigated the usefulness of dual time protocol FDG-PET in differential diagnosis of hypoplastic MDS and AA. Seventeen patients (7 with typical MDS (RA), 4 with hypoplastic MDS, 6 with AA) and 30 healthy adults agreed to participate in this study. Bone marrow biopsy, FDG-PET, MRI and CT were carried out. Spine, femur and iliac lesions were detected by their increased FDG uptake at 60 and 120 min after injection of 0.12 mCi/kg of FDG. The mean lesional standardized uptake values (SUVmean) at 60 and 120 min after injection of FDG were determined. While the median SUVmean of normal lumbar regions at 60 min was 1.123 ± 0.219, that of MDS cases was 2.06 (range, 1.62–2.32). At 120 min, the median SUVmean of normal cases was 1.180 ± 0.119, whereas that of MDS cases was 2.44 (range, 2.08–2.98). It is noteworthy that the SUVmean of four hypoplastic MDS cases was also high (ranges: 1.96–2.23 at 60 min and 1.97–2.52 at 120 min), suggesting that bone marrow in hypoplastic MDS has a hyper-metabolic state of glucose like other malignant disorders. We also observed a patchy hot area, which may be a visualization of ineffective hematopoiesis, throughout the spine image of hypoplastic MDS. In contrast, the SUVmeans at both time points of four AA cases were not different from those in normal control cases. These results suggest that functional imaging analysis using an FDG-PET dual time protocol enables discrimination between hypoplastic MDS and AA, in which MR images similar intensities.


2001 ◽  
Vol 19 (17) ◽  
pp. 3745-3749 ◽  
Author(s):  
Perry W. Grigsby ◽  
Barry A. Siegel ◽  
Farrokh Dehdashti

PURPOSE: The aim of this study was to compare the results of computed tomography (CT) and positron emission tomography (PET) with [18F]-fluoro-2-deoxy-d-glucose (FDG) for lymph node staging in patients with carcinoma of the cervix and to evaluate the relationship of the imaging findings to prognosis. PATIENTS AND METHODS: We retrospectively compared the results of CT lymph node staging and whole-body FDG-PET in 101 consecutive patients with carcinoma of the cervix. Patients were treated with standard irradiation and chemotherapy (as clinically indicated) and observed at 3-month intervals for a median of 15.4 months (range, 2.5 to 30 months). Progression-free survival was evaluated by the Kaplan-Meier method. RESULTS: CT demonstrated abnormally enlarged pelvic lymph nodes in 20 (20%) and para-aortic lymph nodes in seven (7%) of the 101 patients. PET demonstrated abnormal FDG uptake in pelvic lymph nodes in 67 (67%), in para-aortic lymph nodes in 21 (21%), and in supraclavicular lymph node in eight (8%). The 2-year progression-free survival, based solely on para-aortic lymph node status, was 64% in CT-negative and PET-negative patients, 18% in CT-negative and PET-positive patients, and 14% in CT-positive and PET-positive patients (P < .0001). A multivariate analysis demonstrated that the most significant prognostic factor for progression-free survival was the presence of positive para-aortic lymph nodes as detected by PET imaging (P = .025). CONCLUSION: This study demonstrates that FDG-PET detects abnormal lymph node regions more often than does CT and that the findings on PET are a better predictor of survival than those of CT in patients with carcinoma of the cervix.


Sign in / Sign up

Export Citation Format

Share Document