Validation and Regulatory Acceptance of Alternative Test Methods

Author(s):  
Michael Balls ◽  
Julia Fentem
2020 ◽  
Vol 94 (10) ◽  
pp. 3597-3598
Author(s):  
Tim Brecklinghaus

2004 ◽  
Vol 32 (1_suppl) ◽  
pp. 725-729 ◽  
Author(s):  
Amy Rispin ◽  
John W. Harbell ◽  
Mitchell Klausner ◽  
Foster T. Jordan ◽  
Sandra Coecke ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2140
Author(s):  
Sung-Hyun Kim ◽  
Dong Han Lee ◽  
SeoYoon Choi ◽  
Jun-Young Yang ◽  
Kikyung Jung ◽  
...  

Nowadays, various industries using nanomaterials are growing rapidly, and in particular, as the commercialization and use of nanomaterials increase in the cosmetic field, the possibility of exposure of nanomaterials to the skin of product producers and consumers is increasing. Due to the unique properties of nanomaterials with a very small size, they can act as hapten and induce immune responses and skin sensitization, so accurate identification of toxicity is required. Therefore, we selected silica nanomaterials used in various fields such as cosmetics and biomaterials and evaluated the skin sensitization potential step-by-step according to in-vitro and in-vivo alternative test methods. KeratinoSensTM cells of modified keratinocyte and THP-1 cells mimicking dendritic-cells were treated with silica nanoparticles, and their potential for skin sensitization and cytotoxicity were evaluated, respectively. We also confirmed the sensitizing ability of silica nanoparticles in the auricle-lymph nodes of BALB/C mice by in-vivo analysis. As a result, silica nanoparticles showed high protein binding and reactive oxygen species (ROS) mediated cytotoxicity, but no significant observation of skin sensitization indicators was observed. Although more studies are needed to elucidate the mechanism of skin sensitization by nanomaterials, the results of this study showed that silica nanoparticles did not induce skin sensitization.


Sign in / Sign up

Export Citation Format

Share Document