Slow Crack Growth of Polyethylene—Accelerated and Alternative Test Methods

Author(s):  
B. Gerets ◽  
M. Wenzel ◽  
K. Engelsing ◽  
M. Bastian
Author(s):  
Nancy J. Tighe

Silicon nitride is one of the ceramic materials being considered for the components in gas turbine engines which will be exposed to temperatures of 1000 to 1400°C. Test specimens from hot-pressed billets exhibit flexural strengths of approximately 50 MN/m2 at 1000°C. However, the strength degrades rapidly to less than 20 MN/m2 at 1400°C. The strength degradition is attributed to subcritical crack growth phenomena evidenced by a stress rate dependence of the flexural strength and the stress intensity factor. This phenomena is termed slow crack growth and is associated with the onset of plastic deformation at the crack tip. Lange attributed the subcritical crack growth tb a glassy silicate grain boundary phase which decreased in viscosity with increased temperature and permitted a form of grain boundary sliding to occur.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2746
Author(s):  
Mingjin Liu ◽  
Jiaxu Luo ◽  
Jin Chen ◽  
Xueqin Gao ◽  
Qiang Fu ◽  
...  

With the development of polymer science, more attention is being paid to the longevity of polymer products. Slow crack growth (SCG), one of the most important factors that reveal the service life of the products, has been investigated widely in the past decades. Here, we manufactured an isotactic polypropylene (iPP) sample with a novel shear layer–spherulites layer alternated structure using multiflow vibration injection molding (MFVIM). However, the effect of the alternated structure on the SCG behavior has never been reported before. Surprisingly, the results showed that the resistivity of polymer to SCG can be enhanced remarkably due to the special alternated structure. Moreover, this sample shows unique slow crack propagation behavior in contrast to the sample with the same thickness of shear layer, presenting multiple microcracks in the spherulites layer, which can explain the reason of the resistivity improvement of polymer to SCG.


1991 ◽  
Vol 41 (1) ◽  
pp. 55-67 ◽  
Author(s):  
Norman Brown ◽  
Xici Lu ◽  
Yan-Ling Huang ◽  
Ruzheng Qian

1987 ◽  
Vol 109 (4) ◽  
pp. 314-318 ◽  
Author(s):  
D. F. Watt ◽  
Pamela Nadin ◽  
S. B. Biner

This report details the development of a three-stage fracture toughness testing procedure used to study the effect of tempering temperature on toughness in 01 tool steel. Modified compact tension specimens were used in which the fatigue precracking stage in the ASTM E-399 Procedure was replaced by stable precracking, followed by a slow crack growth. The specimen geometry has been designed to provide a region where slow crack growth can be achieved in brittle materials. Three parameters, load, crack opening displacement, and time have been monitored during the testing procedure and a combination of heat tinting and a compliance equation have been used to identify the position of the crack front. Significant KIC results have been obtained using a modified ASTM fracture toughness equation. An inverse relationship between KIC and hardness has been measured.


Sign in / Sign up

Export Citation Format

Share Document