General Properties of Dissipative Dynamic Systems

Author(s):  
A.I. Tseitlin ◽  
A.A. Kusainov
2021 ◽  
Vol 31 (04) ◽  
pp. 2150052
Author(s):  
Xiaodong Jiao ◽  
Enzeng Dong ◽  
Zenghui Wang

Chaotic systems have high potential for engineering applications due to their extremely complex dynamics. In the paper, a five-dimensional (5D) Kolmogorov-like hyperchaotic system is proposed. First, the hyperchaotic property is uncovered, and numerical analysis shows that the system displays the coexistence of different kinds of attractors. This system presents a generalized form of fluid and forced-dissipative dynamic systems. The vector field of the hyperchaotic system is decomposed to inertial, internal, dissipative and external torques, respectively, and the energies are analyzed in detail. Then, the bound of the 5D dissipative hyperchaos is estimated with a constructed spherical function. Finally, the system passes the NIST tests and an FPGA platform is used to realize the hyperchaotic system.


Author(s):  
E. Naranjo

Equilibrium vesicles, those which are the stable form of aggregation and form spontaneously on mixing surfactant with water, have never been demonstrated in single component bilayers and only rarely in lipid or surfactant mixtures. Designing a simple and general method for producing spontaneous and stable vesicles depends on a better understanding of the thermodynamics of aggregation, the interplay of intermolecular forces in surfactants, and an efficient way of doing structural characterization in dynamic systems.


2010 ◽  
Vol 19 (3) ◽  
pp. 68-74 ◽  
Author(s):  
Catherine S. Shaker

Current research on feeding outcomes after discharge from the neonatal intensive care unit (NICU) suggests a need to critically look at the early underpinnings of persistent feeding problems in extremely preterm infants. Concepts of dynamic systems theory and sensitive care-giving are used to describe the specialized needs of this fragile population related to the emergence of safe and successful feeding and swallowing. Focusing on the infant as a co-regulatory partner and embracing a framework of an infant-driven, versus volume-driven, feeding approach are highlighted as best supporting the preterm infant's developmental strivings and long-term well-being.


2001 ◽  
Vol 6 (3) ◽  
pp. 172-176 ◽  
Author(s):  
Lawrence A. Pervin

David Magnusson has been the most articulate spokesperson for a holistic, systems approach to personality. This paper considers three concepts relevant to a dynamic systems approach to personality: dynamics, systems, and levels. Some of the history of a dynamic view is traced, leading to an emphasis on the need for stressing the interplay among goals. Concepts such as multidetermination, equipotentiality, and equifinality are shown to be important aspects of a systems approach. Finally, attention is drawn to the question of levels of description, analysis, and explanation in a theory of personality. The importance of the issue is emphasized in relation to recent advances in our understanding of biological processes. Integrating such advances into a theory of personality while avoiding the danger of reductionism is a challenge for the future.


1996 ◽  
Vol 41 (10) ◽  
pp. 1002-1003
Author(s):  
Esther Thelen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document