surfactant mixtures
Recently Published Documents


TOTAL DOCUMENTS

785
(FIVE YEARS 118)

H-INDEX

59
(FIVE YEARS 7)

Author(s):  
Marco Schnurbus ◽  
Michael Hardt ◽  
Pascal Steinforth ◽  
Javier Carrascosa-Tejedor ◽  
Samuel Winnall ◽  
...  

2021 ◽  
Vol 5 (4) ◽  
pp. 53
Author(s):  
Bronisław Jańczuk ◽  
Anna Zdziennicka ◽  
Katarzyna Szymczyk ◽  
Maria Luisa González-Martín

Measurements of the surface tension of the aqueous solution of SDDS mixture with fluorocarbon surfactants (FC) were carried out and considered in light of the surface tension of aqueous solutions of individual surfactants. Similar analyses were made for many other aqueous solutions of binary and ternary mixtures, taking into account the literature data of the surface tension of aqueous solutions of TX100, TX114, TX165, SDDS, SDS, CTAB, CPyB and FC. The possibility of predicting the surface tension of the aqueous solution of many surfactant mixtures from that of the mixture components using both the Szyszkowski, Fainerman and Miller and Joos concepts was analyzed. The surface tension of the aqueous solutions of surfactant mixtures was also considered based on the particular mixture component contribution to the water surface tension reduction. As a result, the composition of the mixed surface layer at the solution–air interface was discussed and compared to that which was determined using the Hua and Rosen concept. As follows from considerations, the surface tension of the aqueous solution of binary and ternary surfactant mixtures can be described and/or predicted.


2021 ◽  
Vol 9 ◽  
Author(s):  
Camillo La Mesa ◽  
Gianfranco Risuleo

The surface activity of surfactant mixtures is critically analyzed. Cat-anionic systems, in which two ionic species are mixed in non-stoichiometric ratios, are considered. With respect to the solution behavior, where a substantial decrease of cmc is met compared to the pure components, a moderate effect on surface tension, γ, occurs. Compared to the pure species, the decrease of surface tension for such mixtures is not significant, and no clear dependence on the mole fraction anionic/cationic is met. The surface tension is grossly constant in the whole concentration range. Conversely, the interaction parameter for surfaces, βsurf (calculated by the regular solution theory), is more negative than that for micelle formation, βmic. This fact suggests that the desolvation of polar heads of the two species at interfaces is largely different. Very presumably, the underlying rationale finds origin in the sizes and solvation of both polar head groups.


Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 258
Author(s):  
Andrey V. Shibaev ◽  
Andrei A. Osiptsov ◽  
Olga E. Philippova

Viscoelastic surfactants (VES) are amphiphilic molecules which self-assemble into long polymer-like aggregates—wormlike micelles. Such micellar chains form an entangled network, imparting high viscosity and viscoelasticity to aqueous solutions. VES are currently attracting great attention as the main components of clean hydraulic fracturing fluids used for enhanced oil recovery (EOR). Fracturing fluids consist of proppant particles suspended in a viscoelastic medium. They are pumped into a wellbore under high pressure to create fractures, through which the oil can flow into the well. Polymer gels have been used most often for fracturing operations; however, VES solutions are advantageous as they usually require no breakers other than reservoir hydrocarbons to be cleaned from the well. Many attempts have recently been made to improve the viscoelastic properties, temperature, and salt resistance of VES fluids to make them a cost-effective alternative to polymer gels. This review aims at describing the novel concepts and advancements in the fundamental science of VES-based fracturing fluids reported in the last few years, which have not yet been widely industrially implemented, but are significant for prospective future applications. Recent achievements, reviewed in this paper, include the use of oligomeric surfactants, surfactant mixtures, hybrid nanoparticle/VES, or polymer/VES fluids. The advantages and limitations of the different VES fluids are discussed. The fundamental reasons for the different ways of improvement of VES performance for fracturing are described.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3288
Author(s):  
Ádám Juhász ◽  
László Seres ◽  
Norbert Varga ◽  
Ditta Ungor ◽  
Marek Wojnicki ◽  
...  

While numerous papers have been published according to the binary surfactant mixtures, only a few articles provide deeper information on the composition dependence of the micellization, and even less work attempts to apply the enhanced feature of the mixed micelles. The most important parameter of the self-assembled surfactants is the critical micelle concentration (cmc), which quantifies the tendency to associate, and provides the Gibbs energy of micellization. Several techniques are known for determining the cmc, but the isothermal titration calorimetry (ITC) can be used to measure both cmc and enthalpy change (ΔmicH) accompanying micelle formation. Outcomes of our calorimetric investigations were evaluated using a self-developed routine for handling ITC data and the thermodynamic parameters of mixed micelle formation were obtained from the nonlinear modelling of temperature- and composition- dependent enthalpograms. In the investigated temperature and micelle mole fractions interval, we observed some intervals where the cmc is lower than the ideal mixing model predicted value. These equimolar binary surfactant mixtures showed higher solubilization ability for poorly water-soluble model drugs than their individual compounds. Thus, the rapid and fairly accurate calorimetric analysis of mixed micelles can lead to the successful design of a nanoscale drug carrier.


Sign in / Sign up

Export Citation Format

Share Document