A practical approach on temperature variation in Selective Laser Melting with a novel heat transfer model

Author(s):  
K Leong ◽  
A Liu ◽  
C Chua
Metals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1138 ◽  
Author(s):  
Tatu Pinomaa ◽  
Ivan Yashchuk ◽  
Matti Lindroos ◽  
Tom Andersson ◽  
Nikolas Provatas ◽  
...  

Selective laser melting (SLM) is a promising manufacturing technique where the part design, from performance and properties process control and alloying, can be accelerated with integrated computational materials engineering (ICME). This paper demonstrates a process-structure-properties-performance modeling framework for SLM. For powder-bed scale melt pool modeling, we present a diffuse-interface multiphase computational fluid dynamics model which couples Navier–Stokes, Cahn–Hilliard, and heat-transfer equations. A computationally efficient large-scale heat-transfer model is used to describe the temperature evolution in larger volumes. Phase field modeling is used to demonstrate how epitaxial growth of Ti-6-4 can be interrupted with inoculants to obtain an equiaxed polycrystalline structure. These structures are enriched with a synthetic lath martensite substructure, and their micromechanical response are investigated with a crystal plasticity model. The fatigue performance of these structures are analyzed, with spherical porelike defects and high-aspect-ratio cracklike defects incorporated, and a cycle-amplitude fatigue graph is produced to quantify the fatigue behavior of the structures. The simulated fatigue life presents trends consistent with the literature in terms of high cycle and low cycle fatigue, and the role of defects in dominating the respective performance of the produced SLM structures. The proposed ICME workflow emphasizes the possibilities arising from the vast design space exploitable with respect to manufacturing systems, powders, respective alloy chemistries, and microstructures. By digitalizing the whole workflow and enabling a thorough and detailed virtual evaluation of the causal relationships, the promise of product-targeted materials and solutions for metal additive manufacturing becomes closer to practical engineering application.


Equipment ◽  
2006 ◽  
Author(s):  
S. Tsopanos ◽  
M. Wong ◽  
I. Owen ◽  
C. J. Sutcliffe

2018 ◽  
Vol 1 (1) ◽  
pp. 142-150
Author(s):  
Murat Tunc ◽  
Ayse Nur Esen ◽  
Doruk Sen ◽  
Ahmet Karakas

A theoretical post-dryout heat transfer model is developed for two-phase dispersed flow, one-dimensional vertical pipe in a post-CHF regime. Because of the presence of average droplet diameter lower bound in a two-phase sparse flow. Droplet diameter is also calculated. Obtained results are compared with experimental values. Experimental data is used two-phase flow steam-water in VVER-1200, reactor coolant system, reactor operating pressure is 16.2 MPa. On heater rod surface, dryout was detected as a result of jumping increase of the heater rod surface temperature. Results obtained display lower droplet dimensions than the experimentally obtained values.


2006 ◽  
Author(s):  
Filip Kitanoski ◽  
Wolfgang Puntigam ◽  
Martin Kozek ◽  
Josef Hager

Sign in / Sign up

Export Citation Format

Share Document