Analysis of rock slope stability by using the strength reduction method

2008 ◽  
pp. 471-475
Author(s):  
N Li ◽  
M He ◽  
J Hao ◽  
Q Liu
2013 ◽  
Vol 368-370 ◽  
pp. 1774-1780
Author(s):  
Shi Yan ◽  
Hai Tao Du ◽  
Qi Le Yu ◽  
Han Yan

This paper focuses on stability analysis of an artificial rock mass slope by a nonlinear finite element method (FEM). For a long time, rock slope stability problem is always an important research issue in the field of geotechnical engineering, which is related to human life and property safety as well as engineering security and efficiency. Therefore, the stability analysis and evaluation on rock slope is of great significance. The static and dynamic stability analysis on the artificial rock mass slope of WuAn power plant in China is carried on respectively in this paper by using the strength reduction method and FLAC3D software. In this analysis, static and dynamic instability criterions are enumerated, and the static and dynamic safety factors are calculated with the developed criterions of the displacement mutation, respectively. The analysis results show that the artificial rock mass slope is basically stable. It indicates that analyzing slope stability with strength reduction method is feasible.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Ruili Lu ◽  
Wei Wei ◽  
Kaiwei Shang ◽  
Xiangyang Jing

In order to study the failure mechanism and assess the stability of the inlet slope of the outlet structure of Lianghekou Hydropower station, the strength reduction method considering the ubiquitous joint model is proposed. Firstly, two-dimension numerical models are built to investigate the influence of the dilation angle of ubiquitous joints, mesh discretization, and solution domain size on the slope stability. It is found that the factor of safety is insensitive to the dilation angle of ubiquitous joints and the solution domain size but sensitive to the mesh discretization when the number of elements less than a certain threshold. Then, a complex three-dimension numerical model is built to assess the stability of the inlet slope of the outlet structure of Lianghekou Hydropower station. During the strength reduction procedure, the progressive failure process and the final failure surface of the slope are obtained. Furthermore, the comparison of factors of safety obtained from strength reduction method and analytical solutions indicates that the effect of vertical side boundaries plays an important role in the stability of jointed rock slope, and the cohesive force is the main contribution to the resistant force of vertical side boundaries.


2011 ◽  
Vol 243-249 ◽  
pp. 2271-2275
Author(s):  
Shu Yu ◽  
Li Hong Chen ◽  
Ze Ping Xu ◽  
Ning Chen

In the design process of the earth-rock dam, the slope stability problem was always focused on. The shear strength of rockfill in the earth-rock dam had strong nonlinear characteristics. The characteristic directly affected the factor of safety (FOS) of stability of dam slope and the determination of the critical slip surface. The shear strength parameter of rockfill was related to the minimum principal stress σ3 closely. And the value of σ3 had close relationship with the deformation characteristics of filling material and the process of dam filling etc. Strength reduction method has been widely used in solving the FOS of slope stability, and this method has the advantage on the searching of the critical slip surface. Combining the deformation and stress analysis of earth-rockfill dam filling process and the strength reduction method, this paper proposes a comprehensive method of dam slope stability analysis.


Sign in / Sign up

Export Citation Format

Share Document