An Overview of the Recent Status of Critical and Strategic Metal Production and Development in India

2019 ◽  
pp. 1-36
Author(s):  
B.D. Pandey ◽  
Pratima Meshram
Keyword(s):  
2019 ◽  
Vol 5 (9) ◽  
pp. 262-269
Author(s):  
E. Zambrzhitskaya ◽  
◽  
A. Shapovalov ◽  
R. Dema ◽  
M. Kharchenko ◽  
...  

2013 ◽  
Vol 11 (2) ◽  
pp. 243-267 ◽  
Author(s):  
Foreman Bandama ◽  
Shadreck Chirikure ◽  
Simon Hall

The Southern Waterberg in Limpopo Province is archaeologically rich, especially when it comes to evidence of pre-colonial mining and metal working. Geologically, the area hosts important mineral resources such as copper, tin and iron which were smelted by agriculturalists in the precolonial period. In this region however, tin seems to be the major attraction given that Rooiberg is still the only source of cassiterite in southern Africa to have provided evidence of mining before European colonization. This paper reports the results of archaeological and archaeometallurgical work which was carried out in order to reconstruct the technology of metalworking as well as the cultural interaction in the study area and beyond. The ceramic evidence shows that from the Eiland Phase (1000–1300 AD) onwards there was cross borrowing of characteristic decorative traits amongst extant groups that later on culminated in the creation of a new ceramic group known as Rooiberg. In terms of mining and metal working, XRF and SEM analyses, when coupled with optical microscopy, indicate the use of indigenous bloomery techniques that are widespread in pre-colonial southern Africa. Tin and bronze production was also represented and their production remains also pin down this metallurgy to particular sites and excludes the possibility of importing of finished tin and bronze objects into this area.


Paléorient ◽  
1999 ◽  
Vol 25 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Hadi Özbal ◽  
Annemie Mieke Adriaens ◽  
Bryan Earl
Keyword(s):  

Author(s):  
Miljana Radivojević ◽  
Benjamin W. Roberts

AbstractThis paper analyses and re-evaluates current explanations and interpretations of the origins, development and societal context of metallurgy in the Balkans (c. 6200–3700 BC). The early metallurgy in this region encompasses the production, distribution and consumption of copper, gold, tin bronze, lead and silver. The paper draws upon a wide range of existing archaeometallurgical and archaeological data, the diversity and depth of which make the Balkans one of the most intensively investigated of all early metallurgical heartlands across the world. We focus specifically on the ongoing debates relating to (1) the independent invention and innovation of different metals and metal production techniques; (2) the analysis and interpretation of early metallurgical production cores and peripheries, and their collapses; and (3) the relationships between metals, metallurgy and society. We argue that metal production in the Balkans throughout this period reflects changes in the organisation of communities and their patterns of cooperation, rather than being the fundamental basis for the emergence of elites in an increasingly hierarchical society.


2021 ◽  
Vol 13 (14) ◽  
pp. 7706
Author(s):  
Tova Jarnerud ◽  
Andrey V. Karasev ◽  
Chuan Wang ◽  
Frida Bäck ◽  
Pär G. Jönsson

A six day industrial trial using hydrochar as part of the carbon source for hot metal production was performed in a production blast furnace (BF). The hydrochar came from two types of feedstocks, namely an organic mixed biosludge generated from pulp and paper production and an organic green waste residue. These sludges and residues were upgraded to hydrochar in the form of pellets by using a hydrothermal carbonization (HTC) technology. Then, the hydrochar pellets were pressed into briquettes together with commonly used briquetting material (in-plant fines such as fines from pellets and scraps, dust, etc. generated from the steel plant) and the briquettes were top charged into the blast furnace. In total, 418 tons of hydrochar briquettes were produced. The aim of the trials was to investigate the stability and productivity of the blast furnace during charging of these experimental briquettes. The results show that briquettes containing hydrochar from pulp and paper industries waste and green waste can partially be used for charging in blast furnaces together with conventional briquettes. Most of the technological parameters of the BF process, such as the production rate of hot metal (<1.5% difference between reference days and trial days), amount of dust, fuel rate and amount of injected coal, amount of slag, as well as contents of FeO in slag and %C, %S and %P in the hot metal in the experimental trials were very similar compared to those in the reference periods (two days before and two days after the trials) without using these experimental charge materials. Thus, it was proven that hydrochar derived from various types of organic residues could be used for metallurgical applications. While in this trial campaign only small amounts of hydrochar were used, nevertheless, these positive results support our efforts to perform more in-depth investigations in this direction in the future.


2021 ◽  
Vol 180 ◽  
pp. 249-258
Author(s):  
Christian Zehetner ◽  
Christian Reisinger ◽  
Wolfgang Kunze ◽  
Franz Hammelmüller ◽  
Rafael Eder ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document