Ribosomal DNA Diversity in Apidae

2019 ◽  
pp. 89-102 ◽  
Author(s):  
Walter S. Sheppard ◽  
Bruce A. McPheron
Keyword(s):  
Genetics ◽  
2003 ◽  
Vol 164 (4) ◽  
pp. 1511-1518 ◽  
Author(s):  
Ning Yu ◽  
Michael I Jensen-Seaman ◽  
Leona Chemnick ◽  
Judith R Kidd ◽  
Amos S Deinard ◽  
...  

Abstract Comparison of the levels of nucleotide diversity in humans and apes may provide much insight into the mechanisms of maintenance of DNA polymorphism and the demographic history of these organisms. In the past, abundant mitochondrial DNA (mtDNA) polymorphism data indicated that nucleotide diversity (π) is more than threefold higher in chimpanzees than in humans. Furthermore, it has recently been claimed, on the basis of limited data, that this is also true for nuclear DNA. In this study we sequenced 50 noncoding, nonrepetitive DNA segments randomly chosen from the nuclear genome in 9 bonobos and 17 chimpanzees. Surprisingly, the π value for bonobos is only 0.078%, even somewhat lower than that (0.088%) for humans for the same 50 segments. The π values are 0.092, 0.130, and 0.082% for East, Central, and West African chimpanzees, respectively, and 0.132% for all chimpanzees. These values are similar to or at most only 1.5 times higher than that for humans. The much larger difference in mtDNA diversity than in nuclear DNA diversity between humans and chimpanzees is puzzling. We speculate that it is due mainly to a reduction in effective population size (Ne) in the human lineage after the human-chimpanzee divergence, because a reduction in Ne has a stronger effect on mtDNA diversity than on nuclear DNA diversity.


CYTOLOGIA ◽  
2009 ◽  
Vol 74 (2) ◽  
pp. 133-139 ◽  
Author(s):  
Magdalena Witkowska ◽  
Nobuko Ohmido ◽  
Joyce Cartagena ◽  
Nakako Shibagaki ◽  
Shin'ichiro Kajiyama ◽  
...  

Biology ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 91 ◽  
Author(s):  
Miryam Pérez-Cañamás ◽  
Elizabeth Hevia ◽  
Carmen Hernández

DNA cytosine methylation is one of the main epigenetic mechanisms in higher eukaryotes and is considered to play a key role in transcriptional gene silencing. In plants, cytosine methylation can occur in all sequence contexts (CG, CHG, and CHH), and its levels are controlled by multiple pathways, including de novo methylation, maintenance methylation, and demethylation. Modulation of DNA methylation represents a potentially robust mechanism to adjust gene expression following exposure to different stresses. However, the potential involvement of epigenetics in plant-virus interactions has been scarcely explored, especially with regard to RNA viruses. Here, we studied the impact of a symptomless viral infection on the epigenetic status of the host genome. We focused our attention on the interaction between Nicotiana benthamiana and Pelargonium line pattern virus (PLPV, family Tombusviridae), and analyzed cytosine methylation in the repetitive genomic element corresponding to ribosomal DNA (rDNA). Through a combination of bisulfite sequencing and RT-qPCR, we obtained data showing that PLPV infection gives rise to a reduction in methylation at CG sites of the rDNA promoter. Such a reduction correlated with an increase and decrease, respectively, in the expression levels of some key demethylases and of MET1, the DNA methyltransferase responsible for the maintenance of CG methylation. Hypomethylation of rDNA promoter was associated with a five-fold augmentation of rRNA precursor levels. The PLPV protein p37, reported as a suppressor of post-transcriptional gene silencing, did not lead to the same effects when expressed alone and, thus, it is unlikely to act as suppressor of transcriptional gene silencing. Collectively, the results suggest that PLPV infection as a whole is able to modulate host transcriptional activity through changes in the cytosine methylation pattern arising from misregulation of methyltransferases/demethylases balance.


Genetics ◽  
1973 ◽  
Vol 73 (3) ◽  
pp. 429-434
Author(s):  
J James Donady ◽  
R L Seecof ◽  
M A Fox

ABSTRACT Drosophila melanogaster embryos that lacked ribosomal DNA were obtained from appropriate crosses. Cells were taken from such embryos before overt differentiation took place and were cultured in vitro. These cells differentiated into neurons and myocytes with the same success as did wild-type controls. Therefore, ribosomal RNA synthesis is not necessary for the differentiation of neurons and myocytes in vitro.


Sign in / Sign up

Export Citation Format

Share Document