Rehabilitating Stream Channels Using Large Woody Debris with Considerations for Salmonid Life History and Fluvial Geomorphic Processes

2020 ◽  
pp. 545-563
Author(s):  
Larry G. Dominguez ◽  
C. Jeff Cederholm
2011 ◽  
Vol 28 (9) ◽  
pp. 1477-1487 ◽  
Author(s):  
N. S. Lassettre ◽  
G. M. Kondolf

1997 ◽  
Vol 54 (4) ◽  
pp. 931-939 ◽  
Author(s):  
R H Hilderbrand ◽  
A D Lemly ◽  
C A Dolloff ◽  
K L Harpster

Large woody debris (LWD) was added as an experimental stream restoration technique in two streams in southwest Virginia. Additions were designed to compare human judgement in log placements against a randomized design and an unmanipulated reach, and also to compare effectiveness in a low- and a high-gradient stream. Pool area increased 146% in the systematic placement and 32% in the random placement sections of the low-gradient stream, lending support to the notion that human judgement can be more effective than placing logs at random in low-gradient streams. Conversely, the high-gradient stream changed very little after LWD additions, suggesting that other hydraulic controls such as boulders and bedrock override LWD influences in high-gradient streams. Logs oriented as dams were responsible for all pools created by additions regardless of stream or method of placement. Multiple log combinations created only two pools, while the other seven pools were created by single LWD pieces. Total benthic macroinvertebrate abundance did not change as a result of LWD additions in either stream, but net abundances of Plecoptera, Coleoptera, Trichoptera, and Oligochaeta decreased, while Ephemeroptera increased significantly with the proportional increase in pool area in the low-gradient stream.


2011 ◽  
Vol 48 (4) ◽  
pp. 750-763 ◽  
Author(s):  
Felipe Rossetti de Paula ◽  
Silvio Frosini de Barros Ferraz ◽  
Pedro Gerhard ◽  
Carlos Alberto Vettorazzi ◽  
Anderson Ferreira

2018 ◽  
Vol 40 ◽  
pp. 02046 ◽  
Author(s):  
Eric Gasser ◽  
Andrew Simon ◽  
Paolo Perona ◽  
Luuk Dorren ◽  
Johannes Hübl ◽  
...  

Large woody debris (LWD) exacerbates flood damages near civil structures and in urbanized areas and the awareness of LWD as a risk is becoming more and more relevant. The recruitment of “fresh” large woody debris has been documented to play a significant role of the total amount of wood transported during flood events in mountain catchments. Predominately, LWD recruitment due to hydraulic and geotechnical bank erosion and shallow landslides contribute to high volumes of wood during floods. Quantifying the effects of vegetation on channel and slope processes is extremely complex. This manuscript therefore presents the concepts that are being implemented in a new modelling framework that aims to improve the quantification of vegetation effects on LWD recruitment processes. One of the focuses of the model framework is the implementation of the effect of spatio-temporal distribution of root reinforcement in recruitment processes such as bank erosion and shallow landslides in mountain catchments. Further, spatio-temporal precipitation patterns will be considered using a probabilistic approach to account for the spatio-temporal precipitation variability to estimate a LWD recruitment correction coefficient. Preliminary results are herein presented and discussed in form of a case study in the Swiss Prealps.


Sign in / Sign up

Export Citation Format

Share Document