Views from the FDA: Precision Medicine, Genetic Variant Databases and Companion Diagnostics

Author(s):  
Alexander Meisel

Until recently, the clinical management of cancer heavily relied on anatomical and histopathological criteria, with ad hoc guidelines directing the therapeutic choices in specific indications. In the last years, the development and therapeutic implementation of novel anticancer therapies significantly improved the clinical outcome of cancer patients. Nonetheless, such cutting-edge approaches revealed the limitation of the one-size-fits-all paradigm. The newly discovered molecular targets can be exploited either as bona fide targets for subsequent drug development, or as tools to precision medicine, in the form of prognostic and/or predictive biomarkers. This article provides an overview of some of the most recent advances in precision medicine in oncology, with a focus on novel tissue-agnostic anticancer therapies. The definition and implementation of biomarkers and companion diagnostics in clinical trials and clinical practice are also discussed, as well as the changing landscape in clinical trial design.


Author(s):  
Seung Eun Yu ◽  
Ji Yeon Baek ◽  
Sang Myung Woo ◽  
Kyun Heo ◽  
Byong Chul Yoo

2021 ◽  
Vol 12 ◽  
Author(s):  
M. C. Kravetz ◽  
M. S. Viola ◽  
J. Prenz ◽  
M. Curi ◽  
G. F. Bramuglia ◽  
...  

Case introduction: In this work we present a female infant patient with epilepsy of infancy with migrating focal seizures (EIMFS). Although many pharmacological schemes were attempted, she developed an encephalopathy with poor response to antiepileptic drugs and progressive cerebral dysfunction.Aim: To present the pharmacological response and therapeutic drug monitoring of a paediatric patient with a severe encephalopathy carrying a genetic variant in KCNT1 gene, whose identification led to include quinidine (QND) in the treatment regimen as an antiepileptic drug.Case report: Patient showed slow rhythmic activity (theta range) over left occipital areas with temporal propagation and oculo-clonic focal seizures and without tonic spasms three months after birth. At the age of 18 months showed severe impairments of motor and intellectual function with poor eye contact. When the patient was 4 years old, a genetic variant in the exon 24 of the KCNT1 gene was found. This led to the diagnosis of EIMFS. Due to antiepileptic treatment failed to control seizures, QND a KCNT1 blocker, was introduced as a therapeutic alternative besides topiramate (200 mg/day) and nitrazepam (2 mg/day). Therapeutic drug monitoring (TDM) of QND plasma levels needed to be implemented to establish individual therapeutic range and avoid toxicity. TDM for dose adjustment was performed to establish the individual therapeutic range of the patient. Seizures were under control with QND levels above 1.5 mcg/ml (65–70 mg/kg q. i.d). In addition, QND levels higher than 4.0 mcg/ml, were related to higher risk of suffering arrhythmia due to prolongation of QT segment. Despite initial intention to withdrawal topiramate completely, QND was no longer effective by itself and failed to maintain seizures control. Due to this necessary interaction between quinidine and topiramate, topiramate was stablished in a maintenance dose of 40 mg/day.Conclusion: The implementation of Precision Medicine by using tools such as Next Generation Sequencing and TDM led to diagnose and select a targeted therapy for the treatment of a KCNT1-related epilepsy in a patient presented with EIMFS in early infancy and poor response to antiepileptic drugs. QND an old antiarrhythmic drug, due to its activity as KCNT1 channel blocker, associated to topiramate resulted in seizures control. Due to high variability observed in QND levels, TDM and pharmacokinetic characterization allowed to optimize drug regimen to maintain QND concentration between the individual therapeutic range and diminish toxicity.


2020 ◽  
Vol 36 (4) ◽  
pp. 410-417
Author(s):  
Laurenz Govaerts ◽  
Anouk Waeytens ◽  
Walter Van Dyck ◽  
Steven Simoens ◽  
Isabelle Huys

IntroductionPrecision medicines rely on companion diagnostics to identify patient subgroups eligible for receiving the pharmaceutical product. Until recently, the Belgian public health payer, RIZIV-INAMI, assessed precision medicines and companion diagnostics separately for reimbursement decisions. As both components are considered co-dependent technologies, their assessment should be conducted jointly from a health technology assessment (HTA) perspective. As of July 2019, a novel procedure was implemented accommodating for this joint assessment practice. The aim of this research was to formulate recommendations to improve the assessment in the novel procedure.MethodsThis study evaluated the precision medicine assessment reports of RIZIV-INAMI of the last 5 years under the former assessment procedure. The HTA framework for co-dependent technologies developed by Merlin et al. for the Australian healthcare system was used as a reference standard in this evaluation. Criteria were scored as either present or not present.ResultsThirteen assessment reports were evaluated. Varying scores between reports were obtained for the domain establishing the co-dependent relationship between diagnostic and pharmaceutical. Domains evaluating the clinical utility of the biomarker and the cost-effectiveness performed poorly, whereas the budget impact and the transfer of trial data to the local setting performed well.RecommendationsBased on these results we recommend three amendments for the novel procedure. (i) The implementation of the linked evidence approach when direct evidence of clinical utility is not present, (ii) incorporation of a bias assessment tool, and (iii) further specify guidelines for submission and assessment to decrease the variability of reported evidence between assessment reports.


Sign in / Sign up

Export Citation Format

Share Document