Sexual Selection and Mating Systems under Anthropogenic Disturbance

2021 ◽  
pp. 105-126
Author(s):  
Ken A. Otter ◽  
Matthew W. Reudink ◽  
Jennifer R. Foote ◽  
Ann E. McKellar ◽  
Nancy J. Flood
Author(s):  
Rachel Olzer ◽  
Rebecca L. Ehrlich ◽  
Justa L. Heinen-Kay ◽  
Jessie Tanner ◽  
Marlene Zuk

Sex and reproduction lie at the heart of studies of insect behavior. We begin by providing a brief overview of insect anatomy and physiology, followed by an introduction to the overarching themes of parental investment, sexual selection, and mating systems. We then take a sequential approach to illustrate the diversity of phenomena and concepts behind insect reproductive behavior from pre-copulatory mate signalling through copulatory sperm transfer, mating positions, and sexual conflict, to post-copulatory sperm competition, and cryptic female choice. We provide an overview of the evolutionary mechanisms driving reproductive behavior. These events are linked by the economic defendability of mates or resources, and how these are allocated in each sex. Under the framework of economic defendability, the reader can better understand how sexual antagonistic behaviors arise as the result of competing optimal fitness strategies between males and females.


2018 ◽  
Vol 285 (1883) ◽  
pp. 20180836 ◽  
Author(s):  
Jukka Kekäläinen ◽  
Jonathan P. Evans

‘Sperm competition’—where ejaculates from two or more males compete for fertilization—and ‘cryptic female choice’—where females bias this contest to suit their reproductive interests—are now part of the everyday lexicon of sexual selection. Yet the physiological processes that underlie these post-ejaculatory episodes of sexual selection remain largely enigmatic. In this review, we focus on a range of post-ejaculatory cellular- and molecular-level processes, known to be fundamental for fertilization across most (if not all) sexually reproducing species, and point to their putative role in facilitating sexual selection at the level of the cells and gametes, called ‘gamete-mediated mate choice’ (GMMC). In this way, we collate accumulated evidence for GMMC across different mating systems, and emphasize the evolutionary significance of such non-random interactions among gametes. Our overall aim in this review is to build a more inclusive view of sexual selection by showing that mate choice often acts in more nuanced ways than has traditionally been assumed. We also aim to bridge the conceptual divide between proximal mechanisms of reproduction, and adaptive explanations for patterns of non-random sperm–egg interactions that are emerging across an increasingly diverse array of taxa.


Author(s):  
Leigh W. Simmons

‘Mating systems, or who goes with whom, and for how long’ examines the variation in how males and females associate during the breeding season, ranging from brief couplings with multiple partners to lifelong monogamy. It also shows how the discovery that females mate with many partners, even in supposedly monogamous species such as songbirds, was made possible by modern genetic techniques. Variation in mating systems holds considerable implications for the operation of sexual selection. The way that animal mating systems have been explained historically is outlined before considering how a more contemporary understanding of genetic and social relationships has reshaped our thinking and how understanding a species’ mating system can have practical applications.


2020 ◽  
Vol 35 (3) ◽  
pp. 220-234 ◽  
Author(s):  
Melissah Rowe ◽  
Liisa Veerus ◽  
Pål Trosvik ◽  
Angus Buckling ◽  
Tommaso Pizzari

2014 ◽  
Vol 90 (2) ◽  
pp. 599-627 ◽  
Author(s):  
Rebecca A. Boulton ◽  
Laura A. Collins ◽  
David M. Shuker

2011 ◽  
Vol 40 (6) ◽  
pp. 1333-1339 ◽  
Author(s):  
Paul L. Vasey ◽  
Deanna L. Forrester

2014 ◽  
Vol 92 (3) ◽  
pp. 223-228
Author(s):  
D.B. Edwards ◽  
M. Haring ◽  
H.G. Gilchrist ◽  
A.I. Schulte-Hostedde

Across mating systems, females differ in the amount of resources they invest in offspring. For example, polyandrous females invest in acquiring multiple matings rather than providing parental care. We examined how the amount of maternal immune investment, measured as immunoglobulin Y and lysozyme activity in eggs, was influenced by female role across three social mating systems (polyandry, polygyny, and monogamy) in shorebirds. We predicted that polyandry should impose the greatest costs on the ability to provision eggs and monogamy, where females receive benefits from biparentality, the least. Contrary to our predictions, levels of maternally derived egg immune constituents were consistently high across measures in the polyandrous species and low in the monogamous species. Our results may support a link with pace-of-life where developmental costs are greater than the energetic costs of provisioning eggs, and (or) a role for sexual selection acting on maternal immune investment.


Sign in / Sign up

Export Citation Format

Share Document