Modeling dynamic fracture in rubberlike materials

2019 ◽  
pp. 505-511
Author(s):  
Anshul Faye ◽  
Y. Lev ◽  
K.Y. Volokh
1998 ◽  
Vol 78 (2) ◽  
pp. 243-251
Author(s):  
Eran Sharon, Jay Fineberg
Keyword(s):  

1985 ◽  
Vol 46 (C5) ◽  
pp. C5-251-C5-255
Author(s):  
S. Pytel ◽  
L. Wojnar

1999 ◽  
Author(s):  
C. H. Popelar ◽  
J. D. Walker ◽  
C. E. Anderson ◽  
Johnson Jr. ◽  
Beissel G. R. ◽  
...  

2009 ◽  
Vol 15 (6) ◽  
pp. 1017-1026 ◽  
Author(s):  
Govindaraj Magudeeswaran ◽  
Visvalingam Balasubramanian ◽  
S. Sathyanarayanan ◽  
Gankidi Madhusudhan Reddy ◽  
A. Moitra ◽  
...  

1976 ◽  
Vol 43 (1) ◽  
pp. 112-116 ◽  
Author(s):  
L. B. Freund ◽  
G. Herrmann

The dynamic fracture response of a long beam of brittle elastic material subjected to pure bending is studied. If the magnitude of the applied bending moment is increased to a critical value, a crack will propagate from the tensile side of the beam across a cross section. An analysis is presented by means of which the crack length and bending moment at the fracturing section are determined as functions of time after fracture initiation. The main assumption on which the analysis rests is that, due to multiple reflections of stress waves across the thickness of the beam, the stress distribution on the prospective fracture plane ahead of the crack may be adequately approximated by the static distribution appropriate for the instantaneous crack length and net section bending moment. The results of numerical calculations are shown in graphs of crack length, crack tip speed, and fracturing section bending moment versus time. It is found that the crack tip accelerates very quickly to a speed near the characteristic terminal speed for the material, travels at this speed through most of the beam thickness, and then rapidly decelerates in the final stage of the process. The results also apply for plane strain fracture of a plate in pure bending provided that the value of the elastic modulus is appropriately modified.


Sign in / Sign up

Export Citation Format

Share Document