A Novel Algorithm for Modeling Human Decision Making of Inbound Merchant Ships – A Case Study of the Shanghai Waigaoqiao Phase IV Port

Author(s):  
J. Xue ◽  
C.Z. Wu ◽  
P. van Gelder
Author(s):  
Feng Zhou ◽  
Jianxin (Roger) Jiao

Traditional user experience (UX) models are mostly qualitative in terms of its measurement and structure. This paper proposes a quantitative UX model based on cumulative prospect theory. It takes a decision making perspective between two alternative design profiles. However, affective elements are well-known to have influence on human decision making, the prevailing computational models for analyzing and simulating human perception on UX are mainly cognition-based models. In order to incorporate both affective and cognitive factors in the decision making process, we manipulate the parameters involved in the cumulative prospect model to show the affective influence. Specifically, three different affective states are induced to shape the model parameters. A hierarchical Bayesian model with a technique called Markov chain Monte Carlo is used to estimate the parameters. A case study of aircraft cabin interior design is illustrated to show the proposed methodology.


Author(s):  
Tai-Tuck Yu ◽  
James P. Scanlan ◽  
Richard M. Crowder ◽  
Gary B. Wills

Discrete-event modeling has long been used for logistics and scheduling problems, while multi-agent modeling closely matches human decision-making process. In this paper, a metric-based comparison between the traditional discrete-event and the emerging agent-based modeling approaches is reported. The case study involved the implementation of two functionally identical models based on a realistic, nontrivial, civil aircraft gas turbine global repair operation. The size, structural complexity, and coupling metrics from the two models were used to gauge the benefits and drawbacks of each modeling paradigm. The agent-based model was significantly better than the discrete-event model in terms of execution times, scalability, understandability, modifiability, and structural flexibility. In contrast, and importantly in an engineering context, the discrete-event model guaranteed predictable and repeatable results and was comparatively easy to test because of its single-threaded operation. However, neither modeling approach on its own possesses all these characteristics nor can each handle the wide range of resolutions and scales frequently encountered in problems exemplified by the case study scenario. It is recognized that agent-based modeling can emulate high-level human decision-making and communication closely while discrete-event modeling provides a good fit for low-level sequential processes such as those found in manufacturing and logistics.


2003 ◽  
Vol 1256 ◽  
pp. 938-943 ◽  
Author(s):  
E. Alberdi ◽  
A. Povyakalo ◽  
L. Strigini ◽  
P. Ayton

2013 ◽  
Author(s):  
Scott D. Brown ◽  
Pete Cassey ◽  
Andrew Heathcote ◽  
Roger Ratcliff

2019 ◽  
Vol 5 (1) ◽  
pp. 38-49 ◽  
Author(s):  
B. K. Handoyo ◽  
M. R. Mashudi ◽  
H. P. Ipung

Current supply chain methods are having difficulties in resolving problems arising from the lack of trust in supply chains. The root reason lies in two challenges brought to the traditional mechanism: self-interests of supply chain members and information asymmetry in production processes. Blockchain is a promising technology to address these problems. The key objective of this paper is to present qualitative analysis for blockchain in supply chain as the decision-making framework to implement this new technology. The analysis method used Val IT business case framework, validated by the expert judgements. The further study needs to be elaborated by either the existing organization that use blockchain or assessment by the organization that will use blockchain to improve their supply chain management.


Sign in / Sign up

Export Citation Format

Share Document