scholarly journals Artificial intelligence and multimodal data in the service of human decision‐making: A case study in debate tutoring

2019 ◽  
Vol 50 (6) ◽  
pp. 3032-3046 ◽  
Author(s):  
Mutlu Cukurova ◽  
Carmel Kent ◽  
Rosemary Luckin
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Pooya Tabesh

Purpose While it is evident that the introduction of machine learning and the availability of big data have revolutionized various organizational operations and processes, existing academic and practitioner research within decision process literature has mostly ignored the nuances of these influences on human decision-making. Building on existing research in this area, this paper aims to define these concepts from a decision-making perspective and elaborates on the influences of these emerging technologies on human analytical and intuitive decision-making processes. Design/methodology/approach The authors first provide a holistic understanding of important drivers of digital transformation. The authors then conceptualize the impact that analytics tools built on artificial intelligence (AI) and big data have on intuitive and analytical human decision processes in organizations. Findings The authors discuss similarities and differences between machine learning and two human decision processes, namely, analysis and intuition. While it is difficult to jump to any conclusions about the future of machine learning, human decision-makers seem to continue to monopolize the majority of intuitive decision tasks, which will help them keep the upper hand (vis-à-vis machines), at least in the near future. Research limitations/implications The work contributes to research on rational (analytical) and intuitive processes of decision-making at the individual, group and organization levels by theorizing about the way these processes are influenced by advanced AI algorithms such as machine learning. Practical implications Decisions are building blocks of organizational success. Therefore, a better understanding of the way human decision processes can be impacted by advanced technologies will prepare managers to better use these technologies and make better decisions. By clarifying the boundaries/overlaps among concepts such as AI, machine learning and big data, the authors contribute to their successful adoption by business practitioners. Social implications The work suggests that human decision-makers will not be replaced by machines if they continue to invest in what they do best: critical thinking, intuitive analysis and creative problem-solving. Originality/value The work elaborates on important drivers of digital transformation from a decision-making perspective and discusses their practical implications for managers.


Author(s):  
Feng Zhou ◽  
Jianxin (Roger) Jiao

Traditional user experience (UX) models are mostly qualitative in terms of its measurement and structure. This paper proposes a quantitative UX model based on cumulative prospect theory. It takes a decision making perspective between two alternative design profiles. However, affective elements are well-known to have influence on human decision making, the prevailing computational models for analyzing and simulating human perception on UX are mainly cognition-based models. In order to incorporate both affective and cognitive factors in the decision making process, we manipulate the parameters involved in the cumulative prospect model to show the affective influence. Specifically, three different affective states are induced to shape the model parameters. A hierarchical Bayesian model with a technique called Markov chain Monte Carlo is used to estimate the parameters. A case study of aircraft cabin interior design is illustrated to show the proposed methodology.


Author(s):  
Chris Reed

Using artificial intelligence (AI) technology to replace human decision-making will inevitably create new risks whose consequences are unforeseeable. This naturally leads to calls for regulation, but I argue that it is too early to attempt a general system of AI regulation. Instead, we should work incrementally within the existing legal and regulatory schemes which allocate responsibility, and therefore liability, to persons. Where AI clearly creates risks which current law and regulation cannot deal with adequately, then new regulation will be needed. But in most cases, the current system can work effectively if the producers of AI technology can provide sufficient transparency in explaining how AI decisions are made. Transparency ex post can often be achieved through retrospective analysis of the technology's operations, and will be sufficient if the main goal is to compensate victims of incorrect decisions. Ex ante transparency is more challenging, and can limit the use of some AI technologies such as neural networks. It should only be demanded by regulation where the AI presents risks to fundamental rights, or where society needs reassuring that the technology can safely be used. Masterly inactivity in regulation is likely to achieve a better long-term solution than a rush to regulate in ignorance. This article is part of a discussion meeting issue ‘The growing ubiquity of algorithms in society: implications, impacts and innovations'.


2022 ◽  
pp. 231-246
Author(s):  
Swati Bansal ◽  
Monica Agarwal ◽  
Deepak Bansal ◽  
Santhi Narayanan

Artificial intelligence is already here in all facets of work life. Its integration into human resources is a necessary process which has far-reaching benefits. It may have its challenges, but to survive in the current Industry 4.0 environment and prepare for the future Industry 5.0, organisations must penetrate AI into their HR systems. AI can benefit all the functions of HR, starting right from talent acquisition to onboarding and till off-boarding. The importance further increases, keeping in mind the needs and career aspirations of Generation Y and Z entering the workforce. Though employees have apprehensions of privacy and loss of jobs if implemented effectively, AI is the present and future. AI will not make people lose jobs; instead, it would require the HR people to upgrade their skills and spend their time in more strategic roles. In the end, it is the HR who will make the final decisions from the information that they get from the AI tools. A proper mix of human decision-making skills and AI would give organisations the right direction to move forward.


Organization ◽  
2019 ◽  
Vol 26 (5) ◽  
pp. 655-672 ◽  
Author(s):  
Verena Bader ◽  
Stephan Kaiser

Artificial intelligence can provide organizations with prescriptive options for decision-making. Based on the notions of algorithmic decision-making and user involvement, we assess the role of artificial intelligence in workplace decisions. Using a case study on the implementation and use of cognitive software in a telecommunications company, we address how actors can become distanced from or remain involved in decision-making. Our results show that humans are increasingly detached from decision-making spatially as well as temporally and in terms of rational distancing and cognitive displacement. At the same time, they remain attached to decision-making because of accidental and infrastructural proximity, imposed engagement, and affective adhesion. When human and algorithmic intelligence become unbalanced in regard to humans’ attachment to decision-making, three performative effects result: deferred decisions, workarounds, and (data) manipulations. We conceptualize the user interface that presents decisions to humans as a mediator between human detachment and attachment and, thus, between algorithmic and humans’ decisions. These findings contrast the traditional view of automated media as diminishing user involvement and have useful implications for research on artificial intelligence and algorithmic decision-making in organizations.


Author(s):  
Tai-Tuck Yu ◽  
James P. Scanlan ◽  
Richard M. Crowder ◽  
Gary B. Wills

Discrete-event modeling has long been used for logistics and scheduling problems, while multi-agent modeling closely matches human decision-making process. In this paper, a metric-based comparison between the traditional discrete-event and the emerging agent-based modeling approaches is reported. The case study involved the implementation of two functionally identical models based on a realistic, nontrivial, civil aircraft gas turbine global repair operation. The size, structural complexity, and coupling metrics from the two models were used to gauge the benefits and drawbacks of each modeling paradigm. The agent-based model was significantly better than the discrete-event model in terms of execution times, scalability, understandability, modifiability, and structural flexibility. In contrast, and importantly in an engineering context, the discrete-event model guaranteed predictable and repeatable results and was comparatively easy to test because of its single-threaded operation. However, neither modeling approach on its own possesses all these characteristics nor can each handle the wide range of resolutions and scales frequently encountered in problems exemplified by the case study scenario. It is recognized that agent-based modeling can emulate high-level human decision-making and communication closely while discrete-event modeling provides a good fit for low-level sequential processes such as those found in manufacturing and logistics.


Author(s):  
M.P.L. Perera

Adaptive e-learning the aim is to fill the gap between the pupil and the educator by discussing the needs and skills of individual learners. Artificial intelligence strategies that have the potential to simulate human decision-making processes are important around adaptive e-Learning. This paper explores the Artificial techniques; Fuzzy Logic, Neural Networks, Bayesian Networks and Genetic Algorithms, highlighting their contributions to the notion of the adaptability in the sense of Adaptive E-learning. The implementation of Artificial Neural Networks to resolve problems in the current Adaptive e-learning frameworks have been established.


Sign in / Sign up

Export Citation Format

Share Document