Feedback between coupled land-use and hydrologic models 9

Author(s):  
Seleshi Getahun Yalew
Keyword(s):  
Land Use ◽  
2007 ◽  
Vol 11 (6) ◽  
pp. 1857-1868 ◽  
Author(s):  
G. Castilla ◽  
G. J. Hay

Abstract. This paper deals with the description and assessment of uncertainties in land use data derived from Remote Sensing observations, in the context of hydrological studies. Land use is a categorical regionalised variable reporting the main socio-economic role each location has, where the role is inferred from the pattern of occupation of land. The properties of this pattern that are relevant to hydrological processes have to be known with some accuracy in order to obtain reliable results; hence, uncertainty in land use data may lead to uncertainty in model predictions. There are two main uncertainties surrounding land use data, positional and categorical. The first one is briefly addressed and the second one is explored in more depth, including the factors that influence it. We (1) argue that the conventional method used to assess categorical uncertainty, the confusion matrix, is insufficient to propagate uncertainty through distributed hydrologic models; (2) report some alternative methods to tackle this and other insufficiencies; (3) stress the role of metadata as a more reliable means to assess the degree of distrust with which these data should be used; and (4) suggest some practical recommendations.


1975 ◽  
Vol 11 (1) ◽  
pp. 177-179 ◽  
Author(s):  
William R. Gluck ◽  
Richard H. McCuen
Keyword(s):  
Land Use ◽  

2009 ◽  
Vol 13 (8) ◽  
pp. 1427-1438 ◽  
Author(s):  
M. J. Vepraskas ◽  
J. L. Heitman ◽  
R. E. Austin

Abstract. Hydropedology is well positioned to address contemporary issues resulting from climate change. We propose a six-step process by which digital, field-scale maps will be produced to show where climate change impacts will be greatest for two land uses: a) home sites using septic systems, and b) wetlands. State and federal laws have defined critical water table levels that can be used to determine where septic systems will function well or fail, and where wetlands are likely to occur. Hydrologic models along with historic rainfall and temperature data can be used to compute long records of water table data. However, it is difficult to extrapolate such data across land regions, because too little work has been done to test different ways for doing this reliably. The modeled water table data can be used to define soil drainage classes for individual mapping units, and the drainage classes used to extrapolate the data regionally using existing digital soil survey maps. Estimates of changes in precipitation and temperature can also be input into the models to compute changes to water table levels and drainage classes. To do this effectively, more work needs to be done on developing daily climate files from the monthly climate change predictions. Technology currently exists to use the NRCS Soil Survey Geographic (SSURGO) Database with hydrologic model predictions to develop maps within a GIS that show climate change impacts on septic system performance and wetland boundaries. By using these maps, planners will have the option to scale back development in sensitive areas, or simply monitor the water quality of these areas for pathogenic organisms. The calibrated models and prediction maps should be useful throughout the Coastal Plain region. Similar work for other climate-change and land-use issues can be a valuable contribution from hydropedologists.


2018 ◽  
Vol 109 ◽  
pp. 315-328 ◽  
Author(s):  
S.G. Yalew ◽  
T. Pilz ◽  
C. Schweitzer ◽  
S. Liersch ◽  
J. van der Kwast ◽  
...  

2009 ◽  
Vol 6 (2) ◽  
pp. 1737-1768
Author(s):  
M. J. Vepraskas ◽  
J. L. Heitman ◽  
R. E. Austin

Abstract. Hydropedology is well positioned to address contemporary issues resulting from climate change. We propose a six step process by which digital, field-scale maps will be produced to show where climate change impacts will be greatest for two land uses: a) home sites using septic systems, and b) wetlands. State and federal laws have defined critical water table levels that can be used to determine where septic systems will function well or fail, and where wetlands are likely to occur. Hydrologic models along with historic rainfall and temperature data can be used to compute long records of water table data. However, it is difficult to extrapolate such data across land regions, because too little work has been done to test different ways for doing this reliably. The modeled water table data can be used to define soil drainage classes for individual mapping units, and the drainage classes used to extrapolate the data regionally using existing digital soil survey maps. Estimates of changes in precipitation and temperature can also be input into the models to compute changes to water table levels and drainage classes. To do this effectively, more work needs to be done on developing daily climate files from the monthly climate change predictions. Technology currently exists to use the NRCS Soil Survey Geographic (SSURGO) Database with hydrologic model predictions to develop maps within a GIS that show climate change impacts on septic system performance and wetland boundaries. By using these maps, planners will have the option to scale back development in sensitive areas, or simply monitor the water quality of these areas for pathogenic organisms. The calibrated models and prediction maps should be useful throughout the Coastal Plain region. Similar work for other climate-change and land-use issues can be a valuable contribution from hydropedologists.


2015 ◽  
Vol 7 (2) ◽  
pp. 46-55 ◽  
Author(s):  
E L Ndulue ◽  
C C Mbajiorgu ◽  
S N Ugwu ◽  
V Ogwo ◽  
K N Ogbu

2010 ◽  
Vol 13 (3) ◽  
pp. 461-473 ◽  
Author(s):  
Murari Paudel ◽  
E. James Nelson ◽  
Charles W. Downer ◽  
Rollin Hotchkiss

Empirically based lumped hydrologic models have an extensive track record of use for various engineering applications. Physically based, multi-dimensional distributed models have also been in development and use for many years. Despite the availability of high resolution data, better computational resources and robust, numerical methods implemented in such models, their usage is still limited, especially in the realm of surface water runoff simulation. Lumped models are often extended to solve complex hydrologic problems that may be beyond their capabilities. Here we attempt to differentiate the ability of lumped and distributed models to analyze a common watershed development issue such as land use change. For this, we employ two common US Army Corps of Engineers (USACE) models, well established in the literature and application, using the Hydrologic Engineering Center – Hydrologic Modeling System (HEC-HMS) model in a fully lumped mode and the fully distributed model Gridded Surface Subsurface Hydrologic Analysis (GSSHA). A synthetic watershed is used to establish that a distributed model like GSSHA more intuitively simulates land use change scenarios by distinguishing the spatial location of the change and its effects on the watershed response. An actual watershed at Tifton, Georgia is used to validate the observations made from the synthetic watershed.


Sign in / Sign up

Export Citation Format

Share Document