scholarly journals Future directions for hydropedology: quantifying impacts of global change on land use

2009 ◽  
Vol 13 (8) ◽  
pp. 1427-1438 ◽  
Author(s):  
M. J. Vepraskas ◽  
J. L. Heitman ◽  
R. E. Austin

Abstract. Hydropedology is well positioned to address contemporary issues resulting from climate change. We propose a six-step process by which digital, field-scale maps will be produced to show where climate change impacts will be greatest for two land uses: a) home sites using septic systems, and b) wetlands. State and federal laws have defined critical water table levels that can be used to determine where septic systems will function well or fail, and where wetlands are likely to occur. Hydrologic models along with historic rainfall and temperature data can be used to compute long records of water table data. However, it is difficult to extrapolate such data across land regions, because too little work has been done to test different ways for doing this reliably. The modeled water table data can be used to define soil drainage classes for individual mapping units, and the drainage classes used to extrapolate the data regionally using existing digital soil survey maps. Estimates of changes in precipitation and temperature can also be input into the models to compute changes to water table levels and drainage classes. To do this effectively, more work needs to be done on developing daily climate files from the monthly climate change predictions. Technology currently exists to use the NRCS Soil Survey Geographic (SSURGO) Database with hydrologic model predictions to develop maps within a GIS that show climate change impacts on septic system performance and wetland boundaries. By using these maps, planners will have the option to scale back development in sensitive areas, or simply monitor the water quality of these areas for pathogenic organisms. The calibrated models and prediction maps should be useful throughout the Coastal Plain region. Similar work for other climate-change and land-use issues can be a valuable contribution from hydropedologists.

2009 ◽  
Vol 6 (2) ◽  
pp. 1737-1768
Author(s):  
M. J. Vepraskas ◽  
J. L. Heitman ◽  
R. E. Austin

Abstract. Hydropedology is well positioned to address contemporary issues resulting from climate change. We propose a six step process by which digital, field-scale maps will be produced to show where climate change impacts will be greatest for two land uses: a) home sites using septic systems, and b) wetlands. State and federal laws have defined critical water table levels that can be used to determine where septic systems will function well or fail, and where wetlands are likely to occur. Hydrologic models along with historic rainfall and temperature data can be used to compute long records of water table data. However, it is difficult to extrapolate such data across land regions, because too little work has been done to test different ways for doing this reliably. The modeled water table data can be used to define soil drainage classes for individual mapping units, and the drainage classes used to extrapolate the data regionally using existing digital soil survey maps. Estimates of changes in precipitation and temperature can also be input into the models to compute changes to water table levels and drainage classes. To do this effectively, more work needs to be done on developing daily climate files from the monthly climate change predictions. Technology currently exists to use the NRCS Soil Survey Geographic (SSURGO) Database with hydrologic model predictions to develop maps within a GIS that show climate change impacts on septic system performance and wetland boundaries. By using these maps, planners will have the option to scale back development in sensitive areas, or simply monitor the water quality of these areas for pathogenic organisms. The calibrated models and prediction maps should be useful throughout the Coastal Plain region. Similar work for other climate-change and land-use issues can be a valuable contribution from hydropedologists.


2015 ◽  
Vol 16 (2) ◽  
pp. 762-780 ◽  
Author(s):  
Pablo A. Mendoza ◽  
Martyn P. Clark ◽  
Naoki Mizukami ◽  
Andrew J. Newman ◽  
Michael Barlage ◽  
...  

Abstract The assessment of climate change impacts on water resources involves several methodological decisions, including choices of global climate models (GCMs), emission scenarios, downscaling techniques, and hydrologic modeling approaches. Among these, hydrologic model structure selection and parameter calibration are particularly relevant and usually have a strong subjective component. The goal of this research is to improve understanding of the role of these decisions on the assessment of the effects of climate change on hydrologic processes. The study is conducted in three basins located in the Colorado headwaters region, using four different hydrologic model structures [PRMS, VIC, Noah LSM, and Noah LSM with multiparameterization options (Noah-MP)]. To better understand the role of parameter estimation, model performance and projected hydrologic changes (i.e., changes in the hydrology obtained from hydrologic models due to climate change) are compared before and after calibration with the University of Arizona shuffled complex evolution (SCE-UA) algorithm. Hydrologic changes are examined via a climate change scenario where the Community Climate System Model (CCSM) change signal is used to perturb the boundary conditions of the Weather Research and Forecasting (WRF) Model configured at 4-km resolution. Substantial intermodel differences (i.e., discrepancies between hydrologic models) in the portrayal of climate change impacts on water resources are demonstrated. Specifically, intermodel differences are larger than the mean signal from the CCSM–WRF climate scenario examined, even after the calibration process. Importantly, traditional single-objective calibration techniques aimed to reduce errors in runoff simulations do not necessarily improve intermodel agreement (i.e., same outputs from different hydrologic models) in projected changes of some hydrological processes such as evapotranspiration or snowpack.


2015 ◽  
Vol 533 ◽  
pp. 542-556 ◽  
Author(s):  
Björn Guse ◽  
Jochem Kail ◽  
Johannes Radinger ◽  
Maria Schröder ◽  
Jens Kiesel ◽  
...  

2011 ◽  
Vol 15 (1) ◽  
pp. 1-14 ◽  
Author(s):  
P. C. D. Milly ◽  
Krista A. Dunne

Abstract Hydrologic models often are applied to adjust projections of hydroclimatic change that come from climate models. Such adjustment includes climate-bias correction, spatial refinement (“downscaling”), and consideration of the roles of hydrologic processes that were neglected in the climate model. Described herein is a quantitative analysis of the effects of hydrologic adjustment on the projections of runoff change associated with projected twenty-first-century climate change. In a case study including three climate models and 10 river basins in the contiguous United States, the authors find that relative (i.e., fractional or percentage) runoff change computed with hydrologic adjustment more often than not was less positive (or, equivalently, more negative) than what was projected by the climate models. The dominant contributor to this decrease in runoff was a ubiquitous change in runoff (median −11%) caused by the hydrologic model’s apparent amplification of the climate-model-implied growth in potential evapotranspiration. Analysis suggests that the hydrologic model, on the basis of the empirical, temperature-based modified Jensen–Haise formula, calculates a change in potential evapotranspiration that is typically 3 times the change implied by the climate models, which explicitly track surface energy budgets. In comparison with the amplification of potential evapotranspiration, central tendencies of other contributions from hydrologic adjustment (spatial refinement, climate-bias adjustment, and process refinement) were relatively small. The authors’ findings highlight the need for caution when projecting changes in potential evapotranspiration for use in hydrologic models or drought indices to evaluate climate-change impacts on water.


2021 ◽  
Author(s):  
Simon Ricard ◽  
Philippe Lucas-Picher ◽  
François Anctil

Abstract. Statistical post-processing of climate model outputs is a common hydroclimatic modelling practice aiming to produce climate scenarios that better fit in-situ observations and to produce reliable stream flows forcing calibrated hydrologic models. Such practice is however criticized for disrupting the physical consistency between simulated climate variables and affecting the trends in climate change signals imbedded within raw climate simulations. It also requires abundant good-quality meteorological observations, which are not available for many regions in the world. A simplified hydroclimatic modelling workflow is proposed to quantify the impact of climate change on water discharge without resorting to meteorological observations, nor for statistical post-processing of climate model outputs, nor for calibrating hydrologic models. By combining asynchronous hydroclimatic modelling, an alternative framework designed to construct hydrologic scenarios without resorting to meteorological observations, and quantile perturbation applied to streamflow observations, the proposed workflow produces sound and plausible hydrologic scenarios considering: (1) they preserve trends and physical consistency between simulated climate variables, (2) are implemented from a modelling cascades despite observation scarcity, and (3) support the participation of end-users in producing and interpreting climate change impacts on water resources. The proposed modelling workflow is implemented over four subcatchments of the Chaudière River, Canada, using 9 North American CORDEX simulations and a pool of lumped conceptual hydrologic models. Forced with raw climate model outputs, hydrologic models are calibrated over the reference period according to a calibration metric designed to function with temporally uncorrelated observed and simulated streamflow values. Perturbation factors are defined by relating each simulated streamflow quantiles over both reference and future periods. Hydrologic scenarios are finally produced by applying perturbation factors to available streamflow observations.


2021 ◽  
Author(s):  
Lin Li ◽  
Hu Liu ◽  
Yang Yu ◽  
Wenzhi Zhao

<p><strong>Abstract: </strong>Wetlands remaining in the arid inland river landscapes of northwestern China suffer degradation and their resilience and ability to continue functioning under hydrologic and land use changes resulting from climate change may be significantly inhibited. Information on the desert-oasis wetlands, however, is sparse and knowledge of how ecological functioning and resilience may change under climate change and water-resource management is still lacking. Research in oasis wetland areas of the Northwestern China identified linkages between subsurface flow, plant transpiration, and water levels. In this study, we present an ecohydrological analysis of the energy and water balance in the wetland ecosystem. A process-based stochastic soil moisture model developed for groundwater-dependent ecosystems was employed to modelling the interactions between rainfall, water table fluctuations, soil moisture dynamics, and vegetation, and to investigate the ecohydrology of arid inland wetlands system. Field measured groundwater levels, vertical soil moisture profiles, soil water potentials, and root biomass allocation and transpiration of pioneer species in the wetlands were used to calibrate and validate the stochastic model. The parameterized model was then running to simulate the probability distributions of soil moisture and root water uptake, and quantitative descript the vegetation–water table–soil moisture interplay in the hypothesized scenarios of future. Our analysis suggested the increasing rates of water extraction and regulation of hydrologic processes, coupled with destruction of natural vegetation, and climate change, are jeopardizing the future persistence of wetlands and the ecological and socio-economic functions they support. To understand how climate change will impact on the ecohydrological functioning of wetlands, both hydrological and land use changes need to be considered in future works.</p><p><strong>Keywords: </strong>Wetland ecosystem, groundwater, soil moisture dynamics, water balances, Heihe River Basin</p>


Sign in / Sign up

Export Citation Format

Share Document