Phosphatidylcholine Metabolism

2020 ◽  
Author(s):  
Dennis E. Vance
1998 ◽  
Vol 337 (1) ◽  
pp. 97-104 ◽  
Author(s):  
Jie CHENG ◽  
Joseph J. BALDASSARE ◽  
Daniel M. RABEN

Addition of α-thrombin to quiescent IIC9 cells results in the activation of lipid-metabolizing enzymes associated with signal-transduction cascades. These enzymes include phosphatidylinositol (PI)-specific phospholipase C (PI-PLC), phosphatidylcholine (PC)-specific phospholipases C and D and phospholipase A2 (PLA2). Whereas the α-thrombin receptor has been shown to couple with PI-PLCs, it is not clear whether this receptor, or a putative second receptor, couples to one or more of the other phospholipases. In this report we determine whether the cloned receptor couples to all or a subset of these enzymes. We show that (i) an α-thrombin-receptor-activating peptide also elicits the above responses and (ii) addition of enterokinase to IIC9 cells, stably transfected with an α-thrombin receptor (enterokinase- responsive α-thrombin receptor, EKTR) containing an enterokinase cleavage site in place of an α-thrombin cleavage site, stimulates both PI and PC hydrolysis, including PLA2. Enterokinase also induces mitogenesis in the IIC9s transfected with EKTR. These results indicate that, in addition to initiating a mitogenic signalling cascade, the cloned α-thrombin receptor couples to enzymes involved in generating PC-derived, as well as PI-derived, second-messenger molecules in IIC9s. Additionally, using the cells transfected with EKTR, we further demonstrate that only activated, i.e. cleaved, receptors are desensitized.


1999 ◽  
Vol 45 (4, Part 2 of 2) ◽  
pp. 306A-306A
Author(s):  
Daphne J M T Janssen ◽  
Virgilio P Carnielli ◽  
Jan Erik H Bunt ◽  
Ingrid H T Luijendijk ◽  
Dick Tibboel ◽  
...  

2011 ◽  
Vol 164 (6) ◽  
pp. 549-555 ◽  
Author(s):  
Anthony D. Postle ◽  
Neil G. Henderson ◽  
Grielof Koster ◽  
Howard W. Clark ◽  
Alan N. Hunt

1987 ◽  
Vol 244 (2) ◽  
pp. 409-415 ◽  
Author(s):  
P H Stern ◽  
D E Vance

Phosphatidylcholine metabolism was examined in neonatal mouse calvaria in vitro. Incorporation of choline into phosphatidylcholine was slow in this tissue. At 2 h after a pulse of [methyl-3H]choline only 30% of the tissue radioactivity was in the organic phase. Chromatography of the aqueous phase of the tissue extract revealed that more than half of the radioactivity was present as choline at this time. There was no accumulation of phosphocholine, which would have been expected if the cytidylyltransferase were the rate-limiting step in the CDP-choline pathway in the tissue. Choline kinase activity in calvarial cytosol was lower than choline kinase activity in liver cytosol of the same animals. No evidence for significant phosphatidylcholine synthesis through the methylation pathway was found in the calvarial tissue. Although rates of choline-phosphatidylcholine base exchange were higher in bone microsomes than in microsomes from liver, the rate of phosphatidylcholine production through this pathway appeared to be too slow to account for the phosphatidylcholine produced by the calvaria. Phosphatidylcholine synthesis in the calvaria was unaffected by 2 h of treatment with 10 nM-parathyroid hormone, 0.1 nM-0.1 microM-1 alpha,25-dihydroxycholecalciferol, 5 microM-prostaglandin E1 or 2.5 nM-salmon calcitonin, or by 17 h of treatment with 10 nM-parathyroid hormone or 0.1 nM-1 alpha,25-dihydroxycholecalciferol.


Sign in / Sign up

Export Citation Format

Share Document