insulinoma cells
Recently Published Documents


TOTAL DOCUMENTS

425
(FIVE YEARS 33)

H-INDEX

49
(FIVE YEARS 4)

2021 ◽  
Vol 8 ◽  
Author(s):  
Diana C. Rodriguez Camargo ◽  
Sean Chia ◽  
Joseph Menzies ◽  
Benedetta Mannini ◽  
Georg Meisl ◽  
...  

The aggregation of the human islet amyloid polypeptide (IAPP) is associated with diabetes type II. A quantitative understanding of this connection at the molecular level requires that the aggregation mechanism of IAPP is resolved in terms of the underlying microscopic steps. Here we have systematically studied recombinant IAPP, with amidated C-terminus in oxidised form with a disulphide bond between residues 3 and 7, using thioflavin T fluorescence to monitor the formation of amyloid fibrils as a function of time and IAPP concentration. We used global kinetic analyses to connect the macroscopic measurements of aggregation to the microscopic mechanisms, and show that the generation of new aggregates is dominated by the secondary nucleation of monomers on the fibril surface. We then exposed insulinoma cells to aliquots extracted from different time points of the aggregation process, finding the highest toxicity at the midpoint of the reaction, when the secondary nucleation rate reaches its maximum. These results identify IAPP oligomers as the most cytotoxic species generated during IAPP aggregation, and suggest that compounds that target secondary nucleation of IAPP could be most effective as therapeutic candidates for diabetes type II.


2021 ◽  
Author(s):  
Yves Mugabo ◽  
Cheng Zhao ◽  
Ju Jing Tan ◽  
Anindya Ghosh ◽  
Scott A Campbell ◽  
...  

While critical for neurotransmitter synthesis in the brain, members of the 14-3-3 protein family are often assumed to have redundant, over-lapping roles due to their high sequence homology and ubiquitous expression. Despite this assumption, various mammalian 14-3-3 isoforms have now been implicated in regulating cellular and organismal metabolism; however, these functions were primarily observed in cell lines or from systemic knockout mouse models. To date, we have begun to define the contributions of 14-3-3ζ in adipocytes, but whether 14-3-3ζ has additional metabolic roles in other cell types, such as the pancreatic β-cell, is unclear. We previously documented a pro-survival role of 14-3-3ζ in MIN6 insulinoma cells, as depletion of 14-3-3ζ induced cell death, but paradoxically, whole-body deletion of 14-3-3ζ knockout in mice resulted in significantly enlarged β-cell area with no effects on insulin secretion. To better understand the role of 14-3-3ζ in β-cells, we generated β-cell-specific 14-3-3ζ knockout (β14-3-3ζKO) mice, and while no differences in β-cell mass were observed, β14-3-3ζKO mice displayed potentiated insulin secretion due to enhanced mitochondrial function and ATP synthesis. Deletion of 14-3-3ζ led to profound changes to the β-cell transcriptome, where pathways associated with mitochondrial respiration and oxidative phosphorylation were upregulated. Acute treatment of mouse islets and human islets with pan-14-3-3 inhibitors recapitulated the potentiation in glucose-stimulated insulin secretion (GSIS) and mitochondrial function, suggesting that 14-3-3ζ is a critical isoform inβ-cells that regulates GSIS. In dysfunctional db/db islets and islets from type 2 diabetic donors, expression of Ywhaz/YWHAZ, the gene encoding 14-3-3ζ, was inversely associated with insulin secretory capacity, and pan-14-3-3 protein inhibition was capable of enhancing GSIS and mitochondrial function. Taken together, this study demonstrates important regulatory functions of 14-3-3ζ and its related isoforms in insulin secretion and mitochondrial function in β-cells. A deeper understanding of how 14-3-3ζ influences β-cell function will further advance our knowledge of how insulin secretion from β-cells is regulated.


2021 ◽  
pp. 114748
Author(s):  
Tobias M. Backes ◽  
Daniel S. Langfermann ◽  
Andrea Lesch ◽  
Oliver G. Rössler ◽  
Matthias W. Laschke ◽  
...  

2021 ◽  
Author(s):  
Ping Gu ◽  
Yuege Lin ◽  
Qi Wan ◽  
Dongming Su ◽  
Qun Shu

Background: Increased insulin production and secretion by pancreatic β-cells are important for ensuring the high insulin demand during gestation. However, the underlying mechanism of β-cell adaptation during gestation or in gestational diabetes mellitus (GDM) remains unclear. Oxytocin is an important physiological hormone in gestation and delivery, and it also contributes to the maintenance of β-cell function. The aim of this study was to investigate the role of oxytocin in β-cell adaptation during pregnancy. Methods: The relationship between the blood oxytocin level and pancreatic β-cell function in patients with GDM and healthy pregnant women was investigated. Gestating and non-gestating mice were used to evaluate the in vivo effect of oxytocin signal on β-cells during pregnancy. In vitro experiments were performed on INS-1 insulinoma cells. Results: The blood oxytocin levels were lower in patients with GDM than in healthy pregnant women and were associated with impaired pancreatic β-cell function. Acute administration of oxytocin increased insulin secretion in both gestating and non-gestating mice. A three-week oxytocin treatment promoted the proliferation of pancreatic β-cells and increased the β-cell mass in gestating but not non-gestating mice. Antagonism of oxytocin receptors by atosiban impaired insulin secretion and induced GDM in gestating but not non-gestating mice. Oxytocin enhanced glucose-stimulated insulin secretion, activated the mitogen-activated protein kinase pathway, and promoted cell proliferation in INS-1 cells. Conclusions: These findings provide strong evidence that oxytocin is needed for β-cell adaptation during pregnancy to maintain β-cell function, and lack of oxytocin could be associated with the risk of GDM.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A327-A327
Author(s):  
Eliana M Perez-Garcia ◽  
Ruya Liu ◽  
Vijay K Yechoor

Abstract Background: Gene expression is determined by structural interactions in between transcription factors, cofactors and enhancer elements, as well as enhancer-promoter interactions (1). Both YY1 and CTCF are essential, zinc finger proteins that bind hypo-methylated DNA sequences, form homodimers, and thus facilitate DNA loop formation (1). ​However, YY1 preferentially occupies interacting enhancers and promoters, whereas CTCF preferentially occupies sites distal from these regulatory elements, forming larger loops and participating in insulation (1). A sequencing study of spontaneous functional insulinomas in a Chinese cohort identified a somatic a hotspot mutation in YY1 (c.C1115G/p.T372R) in 30% of the cases, associated with increased YY1 activity (2). YY1 is a critical transcription factor involved in the regulation of proliferation and metabolism (2). Hypothesis: YY1 loss-of-function alters energy source preference in pancreatic β-cells. Methods: YY1 stable loss-of-function in mouse insulinoma cell lines was achieved by shRNA lentiviral transduction. Mitochondrial membrane potential (MMP) was measured via flow cytometry of aggregated mitochondria to monomeric mitochondria ratio. Mitostress and complex-substrate controlled respiration were measured by Seahorse analyzer. Mitochondrial copy number was assessed by mitochondrial to nuclear DNA ratio. Quantitative qPCR and Western blotting were used to assess mitochondrial gene and protein expression. Results: Our data indicated that YY1 deficient β-cells showed increased MMP and maximal respiration. No significant differences were found in basal respiration, ATP production, proton leak, non-mitochondrial oxygen consumption or coupling efficiency. We also found that YY1 deficient β-cells exhibited reduced glycolytic capacity and decreased ETC complex IV activity, with concurrent increased complex I and II activity. In addition, YY1 deficient β-cells exhibited elevated mitochondrial copy number​ and increased quantitative mRNA of mitochondrial gene expression, which could be correlated with increased PGC1-α expression. Conclusions: YY1 is critical in the metabolic regulation of β-cells, particularly in the facilitation of glycolytic metabolism. YY1 activating mutations in functional spontaneous insulinoma cells can lead to a proliferation dysregulation accompanied by a metabolic switch that favors glycolysis, while the opposite occurs in YY1 deficient β-cells. References: (1) Weintraub AS et al, Cell 2017 Dec 14; 171:1573–1588 (2) Cao Y et al, Nat Commun 2013 Dec 10; 4:2810


2021 ◽  
pp. mbc.E21-03-0094
Author(s):  
Hiroshi Tokuo ◽  
Shigeru Komaba ◽  
Lynne M. Coluccio

Pancreatic β-cells secrete insulin, which controls blood glucose levels, and defects in insulin secretion are responsible for diabetes mellitus. The actin cytoskeleton and some myosins support insulin granule trafficking and release, although a role for the class I myosin Myo1b, an actin- and membrane-associated load-sensitive motor, in insulin biology is unknown. We found by immunohistochemistry that Myo1b is expressed in islet cells of rat pancreas. In cultured rat insulinoma 832/13 cells Myo1b localized near actin patches, the trans-Golgi network (TGN) marker TGN38, and insulin granules in the perinuclear region. Myo1b depletion by siRNA in 832/13 cells reduced intracellular proinsulin and insulin content and glucose-stimulated insulin secretion (GSIS), and led to the accumulation of (pro)insulin SGs at the TGN. Using an in situ fluorescent pulse-chase strategy to track nascent proinsulin (Bearrows et al., 2019), Myo1b depletion in insulinoma cells reduced the number of (pro)insulin-containing secretory granules budding from the TGN. The studies indicate for the first time that in pancreatic β-cells Myo1b controls GSIS at least in part by mediating an early stage in insulin granule trafficking from the TGN.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Eni Nano ◽  
Maria Petropavlovskaia ◽  
Lawrence Rosenberg

AbstractThe goal of this study was to determine whether recombinant Islet NeoGenesis Associated Protein (rINGAP) and its active core, a pentadecapeptide INGAP104–118 (Ingap-p), protect β cells against cytokine-induced death. INGAP has been shown to induce islet neogenesis in diabetic animals, to stimulate β-cell proliferation and differentiation, and to improve islet survival and function. Importantly, Ingap-p has shown promising results in clinical trials for diabetes (phase I/II). However, the full potential of INGAP and its mechanisms of action remain poorly understood. Using rat insulinoma cells RINm5F and INS-1 treated with interleukin-1β (IL-1β) and interferon‐gamma (IFN‐γ), we demonstrate here that both rINGAP and Ingap-p inhibit apoptosis, Caspase-3 activation, inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production, and explore the related signaling pathways. As expected, IL-1β induced nuclear factor kappa B (NF-κB), p38, and JNK signaling, whereas interferon‐gamma (IFN‐γ) activated the JAK2/STAT1 pathway and potentiated the IL-1β effects. Both rINGAP and Ingap-p decreased phosphorylation of IKKα/β, IkBα, and p65, although p65 nuclear translocation was not inhibited. rINGAP, used for further analysis, also inhibited STAT3, p38, and JNK activation. Interestingly, all inhibitory effects of rINGAP were observed for the cytokine cocktail, not IL-1β alone, and were roughly equal to reversing the potentiating effects of INFγ. Furthermore, rINGAP had no effect on IL-1β/NF-κB-induced gene expression (e.g., Ccl2, Sod2) but downregulated several IFNγ-stimulated (Irf1, Socs1, Socs3) or IFNγ-potentiated (Nos2) genes. This, however, was observed again only for the cytokine cocktail, not IFNγ alone, and rINGAP did not inhibit the IFNγ-induced JAK2/STAT1 activation. Together, these intriguing results suggest that INGAP does not target either IL-1β or IFNγ individually but rather inhibits the signaling crosstalk between the two, the exact mechanism of which remains to be investigated. In summary, our study characterizes the anti-inflammatory effects of INGAP, both protein and peptide, and suggests a new therapeutic utility for INGAP in the treatment of diabetes.


2021 ◽  
Author(s):  
Diti Chatterjee Bhowmick ◽  
Lydia Burnett ◽  
Zhanar Kudaibergenova ◽  
Aleksandar Jeremic

Here, we investigated transcriptional and trafficking mechanisms of human islet amyloid polypeptide (hIAPP) in normal and stressed β-cells. In high glucose-challenged human islets and rat insulinoma cells overexpressing hIAPP, cell fractionation studies revealed increased accumulation of hIAPP. Unexpectedly, a significant fraction (up to 22%) of hIAPP was found in the nuclear soluble and chromatin-enriched fractions of cultured human islet and rat insulinoma cells. The nucleolar accumulation of monomeric forms of hIAPP did not have any adverse effect on the proliferation of β-cells nor did it affect nucleolar organization or function. However, intact nucleolar organization and function were essential for hIAPP expression under normal and ER-stress conditions as RNA polymerase II inhibitor, α-amanitin, reduced hIAPP protein expression evoked by high glucose and thapsigargin. Promoter activity studies revealed the essential role of transcription factor FoxA2 in hIAPP promoter activation in ER-stressed β-cells. Transcriptome and secretory studies demonstrate that the biosynthetic and secretory capacity of islet β-cells was preserved during ER stress. Thus, the main reason for increased intracellular hIAPP accumulation is its enhanced biosynthesis under these adverse conditions.


Sign in / Sign up

Export Citation Format

Share Document