Optimization of replacement scheme of soft rock mass at large cavern group using evolutionary Finite Element Method

Author(s):  
Honggang An ◽  
Xiating Feng
2011 ◽  
Vol 255-260 ◽  
pp. 1926-1929
Author(s):  
Da Kun Shi ◽  
Yang Song Zhang

Based on geologic condition of one tunnel surrounding rock mass, systematic numerical tests had been carried out to study the stability of surrounding rock mass with different distributions of weak intercalated rock by the FEM software ABAQUS and strength reduction finite element method. Some quantificational results about the stability of surrounding rock mass were summarized. And the safety factor and latent slip surface were worked out. The stability of surrounding rock mass was judged by strength reduction finite element method. According to the analysis above, it’s known that the discrepancy of two rules is small; the safety factor is the lowest when weak intercalated rock in vault, and when at bottom, it’s higher than that of in vault. The conclusion can be used to guide the procedure of construction and ensure the safety.


2001 ◽  
Vol 38 (1) ◽  
pp. 95-106 ◽  
Author(s):  
J H Deng ◽  
C F Lee ◽  
X R Ge

Excavation in a rock mass leads to the perturbation of the stress regime, often creating a stress-relieved, locally weakened zone known as the disturbed zone. This paper presents the results of in situ studies that were carried out both in the central rock barrier (or separation block) between the shiplift and the temporary shiplock and in the northern slope of the permanent shiplock of the Three Gorges Project. The vertical extent of the disturbed zone was determined jointly by cross-hole seismic wave penetration testing and borehole elastic modulus testing, and the horizontal extent was assessed by monitoring and evaluating the deformation characteristics. Compared with the undisturbed rock mass, the P-wave velocity of the disturbed zone was reduced by 34–38% and the borehole elastic modulus by 12–31%. The reductions were caused by the opening of primary structural planes or the extension of apertures due to local sliding along the structural planes. In the disturbed zone, no newly formed fractured planes were found. The observed disturbed zone was compared with the tensile stress zones and the shear-damaged zones calculated by the finite element method. A rock reinforcement scheme was recommended and implemented.Key words: disturbed zone, mechanical properties, brittle rock mass, excavation, finite element method, reinforcement.


Sign in / Sign up

Export Citation Format

Share Document