A practice oriented pore-pressure generation model

Author(s):  
E.M. Dawson ◽  
W.H. Roth ◽  
S. Nesarajah ◽  
G. Bureau ◽  
C.A. Davis
2013 ◽  
Vol 50 (11) ◽  
pp. 1118-1128 ◽  
Author(s):  
Carmine Polito ◽  
Russell A. Green ◽  
Erin Dillon ◽  
Changbum Sohn

The energy dissipated in soil during cyclic loading can be used to predict the change in the pore-water pressure developed in the soil. To examine whether the energy required to cause liquefaction is dependent on or independent of the load shape applied, a series of 28 cyclic triaxial tests were performed using five different load shapes having a range of cyclic stress ratios. The five load shapes were applied to identically prepared specimens of clean sand and the dissipated energy – pore pressure generation characteristics examined. It was found that that the dissipated energy to cause initial liquefaction was normally distributed and independent of the load shape, although it is seemingly somewhat dependent on duration of loading. A corollary to this finding is that laboratory data from specimens tested using sinusoidal loadings can be used to calibrate the Green, Mitchell, and Polito (GMP) energy-based pore pressure generation model for use in predicting in situ pore pressures in soils subjected to nonsinusoidal loadings (e.g., earthquake loadings). Given the relative simplicity of the GMP model, these findings make the model an attractive alternative to implement in effective stress dynamic response codes.


2009 ◽  
Vol 129 (9) ◽  
pp. 1690-1698
Author(s):  
Manabu Gouko ◽  
Naoki Tomi ◽  
Tomoaki Nagano ◽  
Koji Ito
Keyword(s):  

2014 ◽  
Author(s):  
Mohannad Sulaiman Al-Muhailan ◽  
Arun Rajagopalan ◽  
Al Aziz Khalid Al-Shayji ◽  
Prakash Balkrishna Jadhav ◽  
Faiz Ismail Khatib

Sign in / Sign up

Export Citation Format

Share Document